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Executive Summary 
 
Sediment loads from construction sites can be much greater than those from agricultural lands.  

The development of sediment control plans is therefore important in reducing the potential 

environmental impact of construction activities. Urban planers and engineers have a plethora of 

choices of onsite and offsite sediment control measures.  The Watershed Assessment Tool for 

Environment Risk (WATER) model was developed to be a tool to assess the effectiveness of 

different sediment control practices.  The WATER model evaluates risk by performing many 

simulations of construction site erosion for possible weather scenarios.   

 

A particularly important component of the WATER model is the prediction of daily weather and 

storm characteristics.  This prediction is done using a stand alone sub-module called the WINDS 

(Weather Input for Nonpoint Data Simulations) model.  The WINDS model has routines to 

determine the statistical parameters of daily climate variables as well as intra-storm 

characteristics.  Data from more than 200 climate and 200 15-minute precipitation stations have 

been analyzed, and the results have been stored in convenient files that are available to users to 

predict weather at their construction sites.  The WINDS model uses algorithms to predict 

weather with the same statistical characteristics as those observed. A particular important 

algorithm is the methodology used to predict storm hyetographs.  The WINDS model also allows 

the user to incorporate 5-day forecast information into the predictions.  Predicted weather and 

storm characteristics were compared to those observed and were found to be in very good 

agreement.  

 

Many years of possible weather conditions can easily be obtained with the WINDS model.  The 

WATER model then converts this weather information into predicted sediment losses from 

construction sites. The key processes for this conversion are processes related to surface runoff, 

plant growth and evapotranspiration, and erosion and sediment transport.  Since there is no one 

best modeling approach for all sites, the WATER model allows the user to select different 

modeling algorithms for most of the processes.  The modeling approaches range from largely 

empirical relationships to fundamental process-based models.  The selection of the best model is 

dependent on the availability of parameters and conditions at the construction site.  
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Chapter 1 

Introduction 
 
Background Information 
 

Sediment loads from construction sites can be much greater than those from agricultural 

lands (Gray and Sotir, 1996).  The development of sediment control plans is therefore 

important in reducing the potential environmental impact of construction activities. Urban 

planers and engineers have a plethora of choices of onsite and offsite sediment control 

measures.  Choices for onsite control include mulches, erosion control blankets, vegetative 

sod and infiltration-enhancing practices.  Detention ponds, infiltration basins, bioretention 

cells, and vegetative buffers are examples of offsite sediment control practices.   

 

Different sediment control strategies are conveniently evaluated using simulation models.  

Current models typically predict erosion and sediment transport using concepts originally 

developed for agricultural landscapes.  This approach presumes similar fundamental 

processes between the two different land uses that can be represented by the proper selection 

of parameters.  New and innovative predictive techniques for sediment control practices are 

likely necessary to meet the needs of the construction sector.  

 

Minnesota Department of Transportation (Mn/DOT) and the Minnesota Local Roads 

Research Board (LRRB) have provided funds to the principal investigator to study the 

usefulness of erosion control blankets and to explore fundamental detachment process.  

Extrapolating this information to the myriad of construction conditions in Minnesota requires 

a theoretical framework that links together the many factors influencing erosion.  One 

important factor is highly variable weather conditions.   

 
Overview of Modeling Concepts 
 

Scale is an important issue in the development and use of models.  Different definitions of 

scale can be found in the literature.  It will defined here as a time duration or length 
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dimension corresponding to a process, an observation or a model.  Process-based models can 

be grouped by the scale at which they represent processes.  Rigorous models typically 

represent processes at a relatively small scale.  The overall response of a larger system is then 

obtained by linking the results from these small-scale processes.  Parameters with this 

approach are considered to be fundamentally-based and therefore applicable to a wider range 

of problems.  An example of an erosion model at the fine scale is the detachment model of 

Wilson (1993).  Here the turbulent detachment forces acting on individual particles are 

considered in the erosion process.   

 

Rigorous modeling approaches often are faced with estimating parameters from observed 

data that are gathered a different scale than the model.  Interpretation of parameter values 

then becomes more difficult.  Additional problems also emerge with the linking of many 

small scale processes for nonlinear systems.  For such systems, relatively small errors at the 

process level grow resulting in poor predictions of the overall system.  An alternative to 

predicting small-scale processes is to develop models corresponding to the observational or 

the decision-making scale of interest to the user.  The framework and parameters for this 

approach are for the cumulative impact of complex small-scale processes.  The use of this 

type of larger scale model to other applications is only appropriate if interactions among 

small-scale processes for these new applications are similar to the original data set.  The 

Universal Soil Loss Equation (Wischmeier and Smith, 1965) is an example of an erosion 

model developed at the observational scale of the erosion plots from which the parameters 

are defined.  The erodibility parameter here includes the integration of small-scale processes 

affecting particle detachment as well as those processes affecting infiltration.  

 

The uniformity of model complexity among different components is another important 

consideration in model development.  The “uniform slop” approach uses the same level of 

complexity for all components of the model.  The overall accuracy of the model is inherently 

assumed to be determined by the accuracy of the weakest component.  A rigorous 

representation of a process is not warranted when its input comes from a crudely represented 

component, succinctly captured by the adage “garbage in, garbage out”.  An alternative to 

this philosophy is, however, appropriate if the response or management decisions are 
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particularly sensitive to one of the components.  Greater effort in modeling that component 

may then be the best approach.  

 

The availability of model parameters and the model sensitivity to potential error in these 

parameters are also important factors in the selection of modeling algorithms.  Insight into 

the role of these two factors can be obtained from a first-order analysis for independent 

parameters. The uncertainty in predictions is defined as (Garen and Burges, 1981) 

)()(
1

i

n

i
i bVARSVar ∑

=

=η  (1.1) 

where η is the model result, b ’s are model parameters, Si i is the sensitivity coefficient for 

parameter b , VAR(bi i) is the variance of the parameters and n is the number of parameters.   

The sensitivity coefficient is defined as the change in model results per change in parameter 

value.  

 

The importance of parameter selection can be explored using Equation 1.1.  A large variance 

reflects large uncertainty in predicted results and corresponds to a lack of confidence in 

drawing conclusion from simulated results.  From Equation 1.1, confidence in predicted 

values is dependent on small variances (uncertainty) of parameters, small sensitivity 

coefficients, and/or small number of parameters.  Rigorous models inevitably have more 

parameters than simple models.  To have the same level of confidence, the sensitivity 

coefficients and/or the uncertainty of the parameters must then be reduced when using a more 

rigorous model to compensate for a larger n in Equation 1.1.  

 

To summarize, the selection of models is dependent on the ability of the user to determine 

parameter values and the rigor of representing important processes.  Although rigorous 

models are intellectually appealing for representing processes, they typically have many 

parameters that are frequently unknown.  Application to a particular site is then difficult.  In 

contrast, simple models of erosion have only a few parameters, but these parameters are 

likely derived from agricultural data.  In addition, simple models do not capture important 

components of erosion and sediment transport.  They are then unable to adequately assess the 

effectiveness of alternative sediment control practices.   Models for construction sites 
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therefore need to have parameters that can be determined for site conditions and also be 

sufficiently rigorous to allow sediment control practices to be evaluated. 

 

Objectives of the Study 
 

The overall goal of the proposed study is to develop a risk assessment tool for erosion from 

construction sites.  Risk assessment is based on the impact of possible weather conditions on 

the effectiveness of different erosion control strategies.  The specific research objectives are: 

 

(1) To assess the needs and demands of erosion control practitioners working with 

construction projects 

(2) To develop a simulation tool that allows practitioners to evaluate the risk of erosion on 

construction sites and that has a suitable framework to allow for easy expansion to meet 

the future needs of the road construction industry, and 

(3) To evaluate the usefulness of the simulation tool using the experiences of seasoned 

erosion control professionals. 

 

The general framework of the model is given in Chapter 2.  This includes information 

received from erosion control practitioners by Objective 1.  A description of the important 

sub-module to predict weather scenario is given in Chapter 3.  The modeling approach used 

for hillslope processes is given in Chapter 4.  An overall summary and conclusions are given 

in the final chapter.  
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Chapter 2 

Overview of the WATER Model 
 

Introduction 
 

The simulation tool for risk assessment is called the Watershed Assessment Tool for 

Environmental Risk (WATER) model.  An overview of the modeling approach in the 

WATER model is given in this chapter.  Of particular interest is the framework for assessing 

risk for variable weather conditions.  Feedback from the advisory panel is also given in this 

chapter.   

 

Details of the particular modeling algorithms of hillslope processes in the WATER model are 

given in Chapter 4.  Since uncertainty in weather is of critical importance in assessing risk, 

the accurate prediction of possible weather scenarios is the foundation for the successful use 

of the WATER model.  Algorithms for the prediction of weather have been combined into a 

stand alone climate generator called the WINDS (Weather Input for Nonpoint Data 

Simulations) model.  Details of the algorithms used in the WINDS model are given in 

Chapter 3. Both WATER and WINDS models are written using Microsoft Visual C++ 

computer language. 

 

Risk Assessment Framework 
 

The WATER model is designed to evaluate the risk associated with different sediment 

control measures.  Risk assessment has historically been based on return periods associated 

with rainfall events.  Although useful, this approach only considers the probability of a 

rainfall event; that is, it does not directly incorporate dynamic site conditions.  The erosion 

model considers both the uncertainty of rainfall events and variability of conditions at 

construction sites.  

 

The modeling approach of the risk assessment model is conceptually similar to that of the 

Water Erosion Prediction Project model (Flanagan and Nearing. 1995).  With the WEPP 
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model, a climate generator is used to simulate many years of weather realization and 

corresponding soil erosion.  The model was originally developed for agricultural lands.  The 

average annual soil loss predicted by the WEPP model could be used, instead of Universal 

Soil Loss Equation, to select the best management practices.   

 

The risk assessment approach of the WATER model is shown in Figure 2.1.  Observed time 

series of maximum daily temperature at Duluth, Minnesota, USA for 1948, 1949 and 1991 

are shown to illustrate the natural variability in yearly weather conditions.  Also shown in 

Figure 2.1 is a hypothetical date for site disturbance by construction activities.  Straw mulch 

and a silt fence are being considered as possible sediment control measures.  The dates for 

the application/installation of these measures are also shown in Figure 2.1.  Potential vegetal 

growth at the site is an important factor in modeling erosion. 
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Figure 2.1. Risk Assessment Approach. 

 
 

Risk assessment is done in the WATER model by simulating plant growth, runoff, and 

6 



 

erosion at the site after the start of construction activities.  These processes are weather 

dependent and different responses are obtained for each yearly realization.  Total sediment 

yield is obtained by summing the sediment yield for individual storms occurring after site 

disturbance.  This process is repeated for different sediment control practices for each year of 

possible weather conditions.  If a large number of realizations are used, probabilistic analyses 

of sediment yield data are possible.  Hypothetical results for the straw mulch and silt fence 

scenarios are shown in Figure 2.2 using cumulative probabilities.  If the user has an 

acceptable sediment loss goal, then the fraction of years that have yields less than or equal to 

the goal can be determined for each of the scenarios.  This concept is illustrated in Figure 2.2. 
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Figure 2.2 Cumulative Probabilities for Different Sediment Control Strategies. 

 
Clearly the above approach is dependent on a good technique for determining the yearly 

weather conditions.  Much of the work for the WATER model was in the development in 

unique algorithms to simulate the weather conditions.  These algorithms are discussed in the 

next chapter.  

 

Insights from Technical Advisory Team 
 

The needs and demands of erosion-control practitioners were assessed by seeking input from 
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a team of experienced erosion-control professionals.  The advisory team members are Ms. 

Katie Benik,  Environmental Services, Mn/DOT; Mr. Leo Holm, Environmental Services, 

Mn/DOT; Mr. Matthew Wassman, TKDA Consultants; Ms. Jennifer Hildebrand, Bonestroo, 

Rosene, Anderlik & Associates; Mr. Larry Berkland, Steele County and Dr. Keith 

Cherryholmes, Minnesota Pollution Control Agency.  

 

As part of brainstorming activities, the team suggested the following erosion/sediment 

control practices for consideration in the WATER model development: straw mulch, wood 

chips, sod, straw and wood blankets, temporary seeding, surface roughening, hydraulically 

applied mulches, soil stabilizers, long-term seeding-vegetation, silt fences, diversions created 

by straw waddles, bundles, biorolls, triangular silt dikes, composite material, pond, 

infiltration basins, vortex swirls, rock checks, inlet protection, hard concrete armament, 

porous pavement, and bioengineering methods.  The advisory team understood that 

implementation of all of these practices exceeded the scope of the project.  Selection of 

practices was left to discretion of the principal investigator.  

 

The advisory team also discussed important site information for the proper design of 

erosion/sediment control practices.  They were summarized into the following categories: 

soil type (clay, silt loam, sand), slope gradient and aspect, soil compaction, topsoil and 

subsoil, surrounding topography for runon impacts and existing vegetation.  The team 

identified the specification of construction time lines as major issue in developing a 

construction site model.  Timelines are dependent on unknown weather conditions and can 

vary greatly with contractors and subcontractors.  A summary of important construction 

activities is shown in Figure 2.3.  

 

The technical advisory team for the project identified having a user friendly interface as 

important.  An example of the interface for the WINDS model is shown in Figure 2.4.  Drop 

down menu options are used and are consistent with those used by most commercial software 

packages.  The user is guided through the myriad of features available in the WINDS and 

WATER models using a “wizard”.  The user can opt for the basic (default) option for input 

or for the advanced option.  The basic option has a minimum number of inputs.  The 
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advanced option allows the user to tailor the simulation approach to the particular 

characteristics of the site and his/her expertise.  
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Figure 2.3. Important Tasks Conducted at Construction Activities. 

 
 

 

 

 

 

 

 

 

 

9 



 

 

 

 

Figure 2.4. Interface Window for the WINDS model. 
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Chapter Three 
Modeling Algorithms of the WINDS Model 

 
Introduction 
 

Climate generators allow many years of possible weather scenarios to be used to determine 

the characteristics of runoff and sediment.  Useful climate generators are developed in two 

stages.  First, the historic weather records are analyzed to obtain pertinent statistical 

information.  Since these characteristics vary with day of year, daily or monthly ensemble 

statistics are typically used to capture seasonal trends.  Second, statistical methods are 

developed and implemented to use the observed statistical information to predict time series 

of weather variables.   

 

The description of the WINDS model is divided into five sections.  The first section 

describes the observed weather data sets used to determine the parameters for the WINDS 

model.  The second section describes the algorithms for analyzing these data sets.  The next 

two sections are then used to describe the predictive algorithms of the WINDS model.  

Separate sections are used to describe algorithms for daily climate variables and for storm 

characteristics.   The last section is used to describe special features of the WINDS model.  

 
Observed Weather Data Sets 
 
Daily Climate Variables 

 
Statistical characteristics of daily climate variables were computed from two different types 

of data sets.  Data from the National Climatic Data Center (NCDC) and from the Solar and 

Meteorological Surface Observational Network (SAMSON) were used to obtain daily 

weather records for 208 climate stations.  The location of these stations is shown in Figure 

3.1.  A summary of the daily weather variables evaluated at each of these stations is given in 

Table 3.1. The length of the data record varied with individual variables, as shown in Table 

3.1 for the Minneapolis site.  The longest record length for any particular weather variable 

among all climate stations was 129 years, and the shortest record length was 28 years. 
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Figure 3.1. Locations of Daily Climate Stations Used in the WINDS model. 
 
 

 
Table 3.1. List of Daily Weather Variables for Minneapolis, MN. 

 

Variables Units 
 Length From To Symbol (Years) (Month-Year) (Month-Year) 

TMAX Temperature, Max °C 103 Jan-1891 Dec-2003
TMIN Temperature, Min °C 103 Jan-1891 Dec-2003

RHMAX Relative Humidity, Max % 56 Jul-1948 Dec-2003
RHMIN Relative Humidity, Min % 56 Jul-1948 Dec-2003
DPTP Dew Point Temperature °C 43 Jan-1961 Dec-2003
AVWD Ave Wind Speed m/s 43 Jan-1961 Dec-2003

PKWND Max Wind Speed m/s 36 Jan-1961 May-1996
WINDIR Wind Direction deg 43 Jan-1961 Dec-2003
PRESS Atmospheric Pressure kPa 43 Jan-1961 Dec-2003

RAD Solar Radiation MJ/m² 40 Jan-1961 Dec-2000
Precipitation mm PRCP 103 Jan-1891 Dec-2003
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The NCDS and SAMSON data sets were combined into a single input file.  This combined 

data set was used to compute the statistical characteristics.  The format used in the input file 

is shown in Table 3.2.  The definition of the header variables are given in Table 3.1.  Missing 

values were represented by “999999”.  Missing values were not used in the computation of 

statistics.  Percent sunshine and Julian day were also created in the combined data file.  

However, a statistical analysis of percent sunshine was not done as part of this project.  

 

Table 3.2.  Format of Climate Data File for Rochester, MN. 

 
YEAR MONTH DAY TMAX TMIN PRCP RHMAX RHMIN DPTP AVWD PKWND WINDIR PRESS PSUN RAD JULIAN

1928 10 1 21.67 7.78 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 275
1928 10 2 16.11 -1.11 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 276
1928 10 3 21.11 5 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 277
1928 10 4 25 13.33 4 999999 999999 999999 999999 999999 999999 999999 999999 999999 278
1928 10 5 21.11 4.44 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 279
1928 10 6 18.89 8.33 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 280
1928 10 7 20.56 -1.11 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 281
1928 10 8 24.44 6.11 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 282
1928 10 9 23.89 5.56 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 283
1928 10 10 19.44 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 284
1928 10 11 13.33 18.33 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 285
1928 10 12 999999 11.67 13 999999 999999 999999 999999 999999 999999 999999 999999 999999 286
1928 10 13 999999 4.44 1 999999 999999 999999 999999 999999 999999 999999 999999 999999 287
1928 10 14 9.44 5 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 288
1928 10 15 18.89 8.89 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 289
1928 10 16 18.33 14.44 18 999999 999999 999999 999999 999999 999999 999999 999999 999999 290
1928 10 17 17.22 6.67 0 999999 999999 999999 999999 999999 999999 999999 999999 999999 291
1928 10 18 8.33 6.67 17 999999 999999 999999 999999 999999 999999 999999 999999 999999 292
1928 10 19 10.56 999999 3 999999 999999 999999 999999 999999 999999 999999 999999 999999 293
1928 10 20 9.44 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 294
1928 10 21 16.11 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 295
1928 10 22 17.22 1.11 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 296
1928 10 23 10 0.56 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 297
1928 10 24 15 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 298
1928 10 25 11.11 -1.11 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 299
1928 10 26 10 -4.44 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 300
1928 10 27 11.11 0 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 301
1928 10 28 7.78 0.56 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 302
1928 10 29 3.89 -9.44 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 303
1928 10 30 4.44 -8.89 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 304
1928 10 31 8.33 2.78 999999 999999 999999 999999 999999 999999 999999 999999 999999 999999 305

 

 
Radiation data are converted into the ratio of that measured at the station to a theoretical 

value that would be obtained when the earth’s atmospheric effects are negligible.  The 

theoretical value is defined as (Lee, 1978) 

])cos()sin()[(cos)
180

(cos)1440( sssca
latSR ωωωφπ

π
−=  (3.1) 

where Ra is the radiation at the station without any atmospheric effects, lat is the station 

latitude, Sc is the solar flux density, φ is the solar declination angle, and ωs is the sunset hour 

angle.  Relationships to estimate these values are shown below. 
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Statistical characteristics for radiation are done using the radiation ratio defined as 

aR
RADRAD =*  (3.3) 

In prediction radiation, the RAD* is first computed.  The RAD is then obtained by 

multiplying this value by the theoretical value given by Equation 3.2.  The theoretical value 

only requires day of the year and the latitude of the construction site. 

 
Data Sets for Intra-Storm Characteristics 

 
The NCDS and SAMSON data sets are used to determine statistical characteristics to predict 

the daily climate variables, including the total depth of precipitation for each storm.  In 

addition to the weather condition represented by these values, the intra-storm characteristics 

are also needed for accurate simulation of hillslope runoff and erosion processes.  Of 

particular interests for the WINDS model are the storm duration, the fraction of total duration 

with no precipitation, transitional probabilities between rain and no-rain bursts, and the 

distribution of intensities within storm (i.e., hyetograph). 

 

Intra-storm characteristics were computed from data sets of 15-minute precipitation depths 

purchased from Hydrosphere Data Products located in Boulder, Colorado.  For each of 

NCDC/SAMSON climate station, a nearby precipitation station was selected.  Therefore, 208 

precipitation stations were chosen for analysis of intra-storm characteristics. The locations of 

these stations are shown in Figure 3.2.  The length of record at precipitation stations was 

considerably shorter than the climate stations data.  The average record length for all stations 

was 26 years. 
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Figure 3.2. Location of Precipitation Stations Used in the WINDS Model. 

 

The format of the data files for the precipitation stations is shown in Table 3.3.  The start of 

each year had the same header information.  Precipitation depths were recorded for each 15 

minute increment starting at 1 am and ending at 1 am the next day.  The total precipitation 

depth is given in the last column.  All precipitation depths were converted into millimeters.  

Missing data were represented by the code “—M” or “—D”.  The notation of “—A” 

indicated that only the cumulated depth was recorded over the intervals with this notation.  

The cumulated depth was divided equally for all 15 minute increments.  Total storm duration 

was defined as the time interval between the first and last measured storm depths within each 

day.  No attempts were made to evaluate whether the observed depths were caused by more 

than one storm.   

 
Analysis of Weather Data 
 
Daily Climate Variables 

 
The WINDS model includes routines to compute the observed statistical characteristics of the 

NCDS/SAMSON daily climate files and the Hydrosphere intra-storm data files.  A paired set 

of files are required to use these routines.  The computer code of the analyses of historical 

data are organized in a class called CWindsParameters.  Separate sections are used to 
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describe the algorithms used to determine the pertinent statistical characteristics of daily 

climate and the intra-storm records.  

 

Table 3.3. Format of the Precipitation Data File. 

 

100 115 130 145 200 215 … 2400 2415 2430 2445 2500
1/1/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/2/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/3/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/4/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/5/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/6/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/7/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/8/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/9/1971 0 0 0 0 0 0 … 0 0 0 0 0

1/10/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/11/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/12/1971 0 0 0 0 0 0 … 0 0 0 0 0
1/13/1971 0 0 0 0 0 0 … 0 0 0 0 0

       Station      SPRING VALLEY                                         Parameter      Prcp
       County       FILLMORE                                              Record Cnt     29
       State        MN                                                    Coverage %     87
       ID           7941               Latitude        43:41:00           Begin Date     05/1971
       Elevation    1275               Longitude      092:25:00           End   Date     12/1999

1971
                         Quarter-Hourly Precipitation in Hundredths of an inch

 

For all non-precipitation data, the mean, standard deviation and skew coefficient are 

computed for the five-day intervals, and therefore, seventy-three values are used to represent 

trends within the year.  The mean, standard deviation and skew coefficient for each five-day 

interval are defined as 
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where xj and n are the non-precipitation variable and the number of observation, respectively, 

for the jth five-day interval.  Means and standard deviations are normalized by dividing the 
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values of Equations 3.4a and 3.4b by the yearly mean and yearly standard deviation, 

respectively.  Normalized values allow the means and standard deviations to be summarized 

without using units.  Other advantages are discussed later. 

 

An output file of the observed statistical characteristics is created and is used as input to the 

WINDS model.  The first lines of this file contain information about the station and yearly 

normalizing means and standard deviations.  The variations in statistics within the year are 

represented by cosine functions with three different harmonics, as suggested by Richardson 

(1981).  The general form of this function is: 

)3cos()2cos()cos()( 654321
* btbbtbbtbbxSTAT jjjoj ++++++=  (3.5) 

*where STAT (xj) is the normalized mean, normalized standard deviation, and skew 

coefficient, and where t  = 2(day )π/365.   j j

 

Initial estimates of the b coefficients of Equation 3.5 are obtained from the theory for 

harmonic analysis as given by Priestly (1981).  Final estimates were taken by using a 

modified nonlinear Gauss method where the impact of adding higher order harmonics could 

be considered.  This impact was assessed by first computing the residual sum of squares 

using the lowest-order harmonic.  Higher order harmonics were added if the percent 

improvement in the residual sum of squares was greater than 0.1%.  The normalized mean 

square error was saved in the climate parameter output file as a measure of the goodness of 

fit of the cosine curve.  

 

An example of a cosine-fitted curve is shown in Figure 3.3 for the normalized mean and 

normalized standard deviation of maximum temperature for Rochester, Minnesota.  The 

cosine function of Equation 3.5 was effective in capturing within-year trends in the daily 

means and standard deviations for this data set.  Visual comparison of trends at other 

locations resulted in similar conclusions; that is, if there was a discernible observed trend, 

then the cosine function fit that trend well.  A poor fit (no trends within a year) results in a 

relatively large normalized mean square error.  In the prediction of weather variables by the 

WINDS model, a constant value is used throughout the entire year when the normalized 

mean square value is greater than 0.65.  The constant value is the average of the type of data 
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shown in Figure 3.3. 
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Figure 3.3. Trends in Normalized Means and Standard Deviation for Maximum Temperature. 

 

Intuitively, if the maximum temperature for any given day is greater than its mean, then the 

minimum temperature would likely also be greater than its mean. This statistical property can 

be captured by using cross correlations.  Likewise, if the maximum temperature for any given 

day is greater than its mean, then the maximum temperature of the next day would likely also 

be greater than its mean.  This property can be captured using serial correlations.  Cross 

correlation coefficients and serial correlation coefficients are computed by conducting a 

second pass through the climate data set and by using the following equations 
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where p and q refers to specific non-precipitation daily variables as identified in Table 3.1.   

 

The above equations are used to compute correlation correlations and serial correlation 

coefficients using a five-day interval (for a total of 73 intervals) for each of the summation 

terms.  The matrix of correlation coefficients for each of these intervals is symmetrical, that 
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is, the correlation between maximum temperature and minimum temperature is the same as 

the correlation between minimum temperature and maximum temperature.  However, the 

matrix of serial correlations coefficients is not necessarily symmetrical because the serial 

correlation between the current-day maximum temperature and the previous-day minimum 

temperature may not equal that between the current-day minimum temperature and previous-

day maximum temperature.  The consequence of a non-symmetrical matrix is that more 

coefficients are needed for serial correlation than for cross correlation.  A non-normalized 

cosine function of Equation 3.5 was fitted to fifty-eight different cross correlation 

coefficients and one-hundred different serial correlation coefficients.  The cosine coefficients 

are stored in the output data file and are once again used as input into the WINDS model.  

 

The number of observation to compute the means, standard deviations, and skew coefficients 

of Equations 3.4 corresponds to all days within the five-day interval that had an observed 

value.  Richardson (1981) suggested that these statistics are also dependent on whether there 

was precipitation on that day.  To indirectly consider correlation between non-precipitation 

variables and precipitation, the statistics of Equations 3.4 were also computed for dry days 

only and wet days only, where wet days were defined as those days with measurable 

precipitation depth.  Dry-days statistics were computed using Equations 3.4 with 

observations only from days with no precipitation.  The appropriate summations for wet days 

were obtained by subtracting dry-days summation terms from those of the total (all days).  

 

Daily precipitation depths were also analyzed to determine the mean, standard deviation and 

skew coefficient by using Equations 3.4.  Since the number of observations for computing 

these statistics is typically much smaller than non-precipitation variables, a twenty-eight day 

averaging interval is used for daily precipitation characteristics.  Within-year variations in 

statistics were once again represented by using coefficient for the fitted cosine function of 

Equation 3.5.  Mean and standard deviation of daily precipitation depth were normalized by 

the station annual precipitation depth and the annual standard deviation.  A plot of 

normalized mean and standard deviation with the fitted cosine curve is shown in Figure 3.4.   

The cosine curve was able to accurate capture within-year variations in the statistics.  To 

provide greater flexibility in predicting the rainfall depth, the parameters of the generalized 
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extreme value distribution were also computed using twenty-eight-day intervals.  This 

includes central tendency, spread, and skewness parameters.  The harmonic cosine functions 

were used to represent within-year variations in these statistics. 
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Figure 3.4.  Trends in Mean and Standard Deviations in Daily Precipitation Depth. 

 

Daily precipitation data were also used to compute the transitional probabilities of wet-to-wet 

days and dry-to-wet days.  These transitional probabilities were obtained by counting the 

number of consecutive wet-wet and dry-wet days within twenty-eight day intervals.  The 

probability of a wet day was also computed.  Within year trends were represented by the 

cosine function.  The total number of wet days was computed, as well as the average annual 

precipitation depth.   

 

A frequency analysis of the daily depth was also done to determine the depths corresponding 

to return periods of 2 year, 5 year, 10 year, 25 year, 50 year and 100 year.  This analysis 

required that the identification of the largest daily precipitation depth for each year, resulting 

in a maximum annual time series.  Following widely used concepts first given by Hershfield 

(1961), this type of time series data was converted to a partial time series by multiplying the 

results obtained from the maximum annual time series by adjustment factors of 1.13, 1.04, 

and 1.01 for the 2-y, 5-y, and 10-y depths, respectively.  Another issue is the difference in 
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precipitation depth between fixed 24-h period (as recorded in the data sets) and 24-h clock 

time that corresponds to storms that have precipitation in two fixed 24-h periods. 

Adjustments to account for differences between clock-time (actual storm duration) and daily 

precipitation depth were investigated by Hershfield (1961).  Based on his work, the daily 

precipitation depth was multiplied by a factor of 1.13 to convert it to an equivalent clock-

time depth. 

 

Two different methods were used to estimate the depths corresponding to different return 

periods.  For both approaches, the statistics are first obtained from the maximum annual time 

series with adjustments for daily to clock-hour values.  One of the methods used the plotting 

position to estimate the depth corresponding to the two-year return period and the extreme 

value type I distribution to estimate the 100-year depth.  Depths corresponding to the 5-y, 10-

y, 25-y, and 50-y return periods were determined by interpolating between these two depths 

using relationships derived from the extreme value type I distribution.  The other method 

used the generalized extreme value type distribution to estimate the return period depths.  

The derived parameters from the adjusted maximum annual time series were used to estimate 

depths for all of the return periods.  The return-period depths obtained from both methods 

were adjusted to partial duration series as previously discussed.  Return-period depths from 

the daily precipitation play an important role in the defining depth-duration-frequency curves 

discussed in the next section.  

 
Intra-Storm Characteristics 

 
In the CWindsParameter Class, a separate output data file is created to store the results of the 

statistical analyses of intra-storm characteristics.  This output file becomes an input file for 

prediction of weather with the WINDS model.  Possible within-year variations in statistics 

were computed using twenty-eight day intervals.  A non-normalized cosine function of 

Equation 3.5 was again fitted to the data, and the coefficients are stored in the output data 

file.  Similar to the analysis at the climate stations, the daily mean (mm), standard deviation 

(mm) and skew coefficients were also computed for each of the intra-storm stations, and the 

cosine coefficients were stored in the intra-storm output file.  
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Storm duration is an important parameter in determining intra-storm characteristics.  

Normalized storm durations as a function of normalized precipitation depths for the months 

of May, July and September are shown in Figure 3.5 for Spring Valley, Minnesota.  Storm 

durations were normalized by 24 h, and precipitation depths were normalized by the mean 

daily precipitation.  This figure suggests a weak relationship between storm duration and 

depth.  The parameters and statistics for three different relationships of storm duration with 

respect to storm depth were analyzed: (1) no trend where the mean and standard deviation 

were used to summarize the characteristics, (2) linear relationship where the slope of the least 

square line was computed as well as the mean and standard deviation of residuals, and (3) a 

logistic relationship.  The logistic relationship is described in greater detail below.  The best 

least square fit of the linear and logistic relationships are also shown in Figure 3.5.  
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Figure 3.5.  Storm Duration as a Function of Precipitation Depth for Spring Valley, MN. 

 

The logistic model was selected to ensure that storm duration is between zero and twenty-

four hours.  It can be developed by assuming that the relative rate of change in storm duration 

with depth is directly related to the remaining available time in a day.  Let y represent storm 

duration and x total storm depth.  The logistic model can then be represented as 

)y-y()1( max1κβ
=

+ xd
yd

y
 (3.7) 
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where dy/dx is the rate of change in storm duration with respect to storm depth, κl is a rate 

coefficients, ymax is the maximum possible storm duration (i.e., 24 h), and β is a base 

constant.  A dimensionless formulation is possible using the variables of y*=y/ymax and 

x* x x=x/  (  is the mean storm depth).  The dimensionless logistic model can then be written 

as 

*
1

*
*** )

1
1()1( xdyd

yy
κ

β
=

−+
 (3.8) 

where the additional dimensionless variables are defined as β* * x= β/y and κ =κ  ymax l 1 max . An 

analytical solution is obtained by integrating with partial fractions to obtain 
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* *For each twenty-eight day interval, optimal values for β  and κl  were determined using 

nonlinear regression techniques.  Cosine functions were fitted to the data to represent these 

two parameters within the year.  As shown in Figure 3.5, observed duration varied greatly 

around the logistic function.  This variation was evaluated by defining residuals as 
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 (3.10) 

that is, the residual is defined as the difference in depth and the equivalent predicted depth 

for a given storm duration.  The above formulation allows the prediction of storm duration to 

be bounded by zero and twenty-four hours.  The mean and standard deviation of ed* was 

computed for each twenty-eight day interval, fitted with cosine functions, and coefficients 

stored in the intra-storm output file. 

 

Another important intra-storm characteristic is the fraction of the total duration with no 

precipitation.  This fraction is called the no-precipitation gap.  The fraction of time with no 

precipitation is shown in Figure 3.6 for the months of May, July, and September for Spring 

Valley, Minnesota.  Trends in fraction of gap (represented by the symbol g) were evaluated 

using an exponential function, that is, the rate of change in no-rain gap with storm duration is 

directly proportional to the remaining available gap fraction, or mathematically,  

)g-g( maxκ=
yd
gd  (3.11) 
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where dg/dy is the rate of change in gap fraction with respect to storm duration, κ has units of 

[1/L], and g  is the maximum gap fraction (i.e., gmax max=1).  A dimensionless formulation is 

obtained using g*=g/g =g and y*=y/y where ymax max, max = 24 h.  The above equation can then 

be written as 

**)
1

1( dygd
g

κ=
−

 (3.12) 

where κ*=κ/y . The above equation can be easily solved for g as  max

)xexp(--1 **κ=g  (3.13) 
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Figure 3.6.  Fraction of Time with No Precipitation for Storms At Spring Valley, MN. 

 
* The least square estimate of κ was obtained for each twenty-eight day period using simple 

log transformation.  Trends within the years were captured using the cosine function.  An 

analysis of residuals was done, where residuals were defined as 

))1(ln( *
**

κ
gyeg

−
−−=  (3.14) 

where the twenty-eight day interval’s mean and standard deviation are computed from the 

data set and within-year trends represented by cosine function.  To provide the user of the 

WINDS model with additional options, the mean and standard deviation of fraction of gaps 
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and the least square slope of a linear relationship and corresponding standard error were also 

computed and summarized in the output file with coefficients for the cosine curves. 

 

The transitional probabilities within a storm of wet-wet burst and a wet-dry burst sequences 

were also computed.  The fraction of the storms that had the peak precipitation intensities in 

the first and fourth quartiles of the storm was determined.  For storms with only two rainfall 

bursts, the fraction of the total precipitation depth in the first burst was also analyzed.  All of 

these statistics were fitted with cosine functions for capturing within-year trends and the 

coefficients were stored in the precipitation output data file.  

 

The intra-storm characteristics were used to perform a depth-duration-frequency (DDF) 

analysis.  Precipitation depths for return periods of 2 year, 5 year, 10 year, 25 year, 50 year 

and 100 year for durations of 15 min, 30 min, 45 min, 60 min, 90 min, 2 h, 3 h, 4 h, 6 h, 12 h, 

and 24 h were computed by first determining the largest depth for each of the duration for 

each year in the observed data set.  The maximum annual time series was converted into a 

partial duration series by multiplying the annual series values by adjustment factors of 1.13, 

1.04, and 1.01 for the 2-y, 5-y, and 10-y depths (Hershfield, 1961).  Adjustments were also 

made to account for differences between clock-time (actual storm duration) and precipitation 

gathered over a fixed 24 hour period.  The following equation was used to adjust to clock 

time 

])
24
T0.1393( -exp[ - 2)( =TFd  (3.15) 

where Fd(T) is the adjustment in depth for a given duration of T (h).  For T=24 h, the 

adjustment corresponds to the recommended value by Hershfield (1961) of 1.13 for daily 

depths.  For D=15 min, the change in precipitation depth is small. 

 

For some intra-storm stations, there were only a few measured storms within a year because 

of problems with missing data.  Determination of the largest precipitation depth is unreliable 

if only a few of the storms for that year were actually measured.  Data for a given year were 

generally not included if the number of storms was less than 30% of the average number of 

wet days of a nearby climate station.  Exceptions were allowed if one of the storms was a 
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particularly large event.  A large event was defined if the total depth was greater than 10% of 

the annual precipitation depth, as estimated by a nearby climate station.  

 

The relatively short record length of the intra-storm characteristics made the DDF analysis 

more difficult.  Four different approaches were used to estimate the depths for different 

return periods and durations.  The most straightforward approach relied on the depths 

obtained mostly from the extreme value type I distribution.  For each duration, the plotting 

position method was used to estimate the depth corresponding to the two-year return period 

and the extreme value type I distribution was used to estimate the 100-year depth from the 

mean and standard deviation of the maximum annual time series.  Depths corresponding to 

the 5-y, 10-y, 25-y, and 50-y return periods were determined by interpolating between these 

two depths using the relationships derived from the extreme value type I (EV1) distribution.  

Adjustment for conversion to a partial duration series was then done using factors previously 

described.  For some stations, standard deviations of depth for given duration were 

inconsistent, resulting in unlikely trends in return period depths.  The inconsistent standard 

deviation values were likely caused by insufficient data record length. 

 

The other three approaches used the results of the frequency analysis for a nearby climate 

station with (usually) a much longer record of daily depths.  The “TP-40” approach used the 

24-h depth (PF,24) obtained from the generalized extreme value (GEV) distribution.  The 1-h 

depth (P ) was then estimated using the NRCS relationship of P  = 0.46 PF,1 F,1 F,24 for their 

Type II region (Kent, 1973).  For durations between 1 h and 24 h, the relationships embedded 

in the USWB TP 40 were used (Hershfield, 1961), that is,  

  )P-(P 124401 TPT fPP +=  (3.16) 

where fTP40 equaled 0.056, 0.11, 0.22, 0.31, 0.50, and  0.75 for durations of 90 min, 2 h, 3 h, 

4 h, 6 h, and 12 h,, respectively.  For duration less than 1 h, the 30-minute depth (PF,0.5) is 

estimated using the NRCS relationship of P  = 0.37 PF,0.5 F,24 for a Type II region.  The 15 min 

depth (P ) and 45-min depth (PF,0.25 F,0.75) were computed using relationships embedded in 

HYDRO-35 (Frederick et al., 1977).  These depths were defined as  

  
51.0

49.0 1,5.0,
25.0,

FF
F

PP
P

−
=  (3.17a) 
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  )P-P(70.0 F,0.25F,125.0,75.0, += FF PP  (3.17b) 

The third approach (Weighed Method) for determining the depths for each duration and 

return period is to combine the results for the EV1 method and the TP-40 method.  The depth 

for the Weighed method is determined by the following equation 

 40)
30

30(1 )
30

(401 ,,,2,1, TFTFTFTFTF TP
n

EV
n

nTPwEVwP
+

+
+

=+=  (3.18) 

where n is the number of years used in the estimate of depths using the EV1 method.  With 

this equation, equal weight is given to the EV1 and the TP40 depths for n=30.   

 

The fourth approach used the generalized extreme value (GEV) distribution.  Here 

normalized spread and asymmetric statistics at the nearby long-record climate station were 

used to estimate the GEV spread and GEV asymmetric statistics for different durations at the 

intra-storm station.  The frequency analysis for the climate station corresponds to the 24-h 

duration.  For the climate station, the GEV spread statistic was normalized by its 

corresponding mean, and the GEV asymmetric statistic was normalized by its corresponding 

spread statistic. These normalized statistics were assumed to be constant for all durations of 

the intra-storm data set.  This data set was then only used to compute the mean for each 

duration from its maximum annual time series.  The corresponding intra-storm GEV spread 

was then obtained by the product of the observed mean and the normalized spread.  

Likewise, the corresponding intra-storm GEV asymmetric statistic was obtained as the 

product of the GEV spread and the normalizing asymmetric statistic. Precipitation depths for 

all of the return periods were then estimated using the GEV distribution from these derived 

parameters.  

 

The DDF values were summarized by fitting the following breakpoint relationship 

ξ321 b
0, )(

T
TTFbP bbb

TF =  (3.19) 

where PF,T is the precipitation depth for storm duration T (h) and return period frequency F 

(y), T  is the breakpoint duration (set at 1 h), ξ is an indictor variable equal to zero for T < Tb b 

and one for T >T  and b , bb o 1, b , and b2 3 are coefficients to the DDF values described in the 

previous paragraphs.  The above formulation allows the relationship between depth and 
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duration to vary to the power of b  for T < T  and the power of b -b  for T>T2 b 2 3 b. This provides 

greater flexibility in fitting Equation 3.19 to the observed data set. 

 

, b , b , and bTwo different methods were used to estimate the coefficients of bo 1 2 3.  The log-

form of Equation 3.19 results in a linear relationship from which the coefficients can be 

defined easily using the least square estimators.  Nonlinear regression analysis was also used.  

This approach does not require a log-transformation of the data.  The fit of Equation 3.19 

using the nonlinear regression coefficients is shown in Figure 3.7.  The user of the WINDS 

model has the options of selecting the coefficients obtained by linear or the nonlinear 

regression methods for DDF values estimated by the EV1 method, the TP40 method, the 

Weight method, or the GEV method.  There are a total of twelve choices.  Values are stored 

in the data file by using a line of output for parameters corresponding to duration less than 

breakpoint duration (i.e., ξ =0).  Here the log-intercept parameter, bo, the power of frequency, 

b , and power of duration, b1 2, are stored.  Another line of output is used for the parameters 

corresponding to duration greater than the breakpoint duration (i.e., ξ =1).  The log-intercept 

parameter, boTb
b3, the power of frequency, b1, and power of duration, (b  – b2 3), are stored in 

the data file.  
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Figure 3.7. DDF values and Fitted Function for Holyoke, MN 

The DDF values obtained at the intra-storm stations were converted to normalized values for 

a nearby daily climate station by using the following equation 

)()(
24,224,

24,*
, c

hy

T

hF

c
hF

TF P
P

P
P

P =  (3.30) 

where P*
F,T is the normalized depth for a given return period (F) and duration (T).  All depths 

were normalized by the 2-y, 24-h depth available at the climate station (superscript c).  

Depths were also adjusted by the ratio of F-y, 24-h depth at the climate station to that at the 

intra-storm station.  The DDF curve used to summarize the normalized DDF value can be 

written as 
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where F* = F/2, T* * = T/24, Tb  = Tb/24 and bo
* = (Tb

* -b3) .  Since the DDF values are not 

represented perfectly by the DDF curve, linear and nonlinear regression methods were 

applied to Equation 3.21 to determine the coefficients bo
*, b , b , and b1 2 3 for each of the four 

different methods for computing PF,T.  The eight sets of coefficients are stored in the output 

file for daily climate variables as well the normalizing 2-y depth.  Coefficients are stored as 
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the log-intercept, power of frequency, and power of duration in separate lines for duration 

less than and greater than the breakpoint duration. 

 
Prediction of Daily Climate Variables 
 
Introduction 

 
Prediction of daily climate variables is done by selecting statistical methods to simulate a 

time series of values that have similar statistical characteristics to those observed.  Let’s 

consider a hypothetical time series plot of daily temperature and rainfall intensity as shown in 

Figure 3.8.  In this figure, temperature appears to be well represented as a continuous curve.  

Continuous variables are usually simulated within a statistical framework as Markov 

processes.  The rainfall intensity in Figure 3.8 appears to be discontinuous as the rainfall 

intensity sudden jumps from zero to a non-zero value because of a sudden burst of 

precipitation.  A sequence of precipitation events may then be best represented as discrete 

events of wet and dry days.  The simulation of discrete events within a statistical framework 

is usually done using Markov chains.  Here the probability of a transition from a dry to a wet 

day or from a wet to a dry day is of fundamental importance.  After a day has been 

determined to be wet, the total depth can be estimated from a specified probability density 

function with appropriate statistical parameters.  

 

A summary of daily weather variables predicted by the WINDS model is given in Table 3.1  

Non-precipitation variables are simulated as Markov processes.  Daily precipitation depth is 

predicted using a Markov chain for discrete dry-and-wet day events that is coupled with a 

depth estimate from a specified probability density function.  Details of these methods are 

given in three sections.  The first section describes methods used in WINDS for predicting 

uncorrelated non-precipitation weather variables.  This is the simplest option and is the most 

robust approach.  The second section describes methods used to predict non-precipitation 

variables such that cross-correlations among key weather variables are maintained.  The final 

section discusses the approach used to compute daily precipitation depth.   
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Figure 3.8.Hypothetical Time Series of Temperature and Rainfall Intensity. 

 

The prediction of daily weather variables is fundamentally related to random processes or 

events.  It is therefore possible, especially for the uncorrelated weather option, that for any 

particular day that the predicted minimum temperature is greater than the predicted 

maximum, that the predicted minimum relative humidity is greater than the predicted 

maximum, that the predicted maximum wind speed is less than the predicted average, and 

that the predicted dew point temperature is greater than the predicted maximum temperature.  

Appropriate checks are placed in the code to prevent these inconsistencies. 

 
Uncorrelated Non-Precipitation Weather Variables 

 
The simplest and most robust option for the user is to select uncorrelated non-precipitation 

weather variables.  For this option, weather variables are predicted independently of each 

other.  For example, minimum temperature is not influenced by the maximum temperature 

for that day.  However, serial correlation with the previous day is included in the simulation 

approach.  In the WINDS model, non-precipitation variables are predicted using a first-order 

autoregressive model.  This model is defined as 

txtxxt XX εμρμ +−+= − )( 11  (3.22) 

 is the predicted value (e.g., maximum temperature for day t), Xwhere Xt t-1 is the predicted 

value of the previous day, μ  is the mean value, and ε  is a random error.   x t
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As discussed in the previous section, the standard deviation and the skew coefficient for all 

of the weather variables were computed, and appropriate cosine coefficient stored into an 

input file for the WINDS model.  The standard deviation and the coefficient of variation of 

the error term in Equation 3.22 can be related to the standard deviation and the skew 

coefficient of the weather variable using 

2
11 ρσσε −= x  (3.23a) 

)
)1(

1( 2/32
1

3
1

ρ
ρ

ε −
−

= sxs CC  (3.23b) 

The key parameters of Equation 3.22 can be obtained from the information stored in the daily 

climate file.  The mean and standard deviation are obtained as   

])3cos()2cos()cos([)( 654321 btbbtbbtbbXXSTAT tttostdt ++++++=  (3.24) 

where STAT(Xt) is the mean and the standard deviation of the weather variable of interest, 

where t  = 2tπ/365 and Xt std is the normalizing value (also stored in the daily climate file).  

The serial correlation coefficient and the skew coefficient are defined using a form of 

Equation 3.24 for Xstd = 1. The user has the choice of selecting a random error using the 

normal distribution or the extreme value type I distribution.  Both use a mean of zero.  The 

normal distribution should be selected for most applications.  

 

Means, standard deviations, and skew coefficients may differ between days with and without 

precipitation.  Since these statistics were computed for all days (wet and dry), only dry days, 

and only wet days, the user can select to vary means, standard deviations, and skew 

coefficients depending on the precipitation state of the day.  

 
Correlated Non-Precipitation Variables 

 
The procedures outlined by Matalas (1967) are used to simulate cross-correlations and 

additional serial correlations between key weather variables.  This approach requires the 

solution of the following system of equations, corresponding to j=1 to n weather variables, 

ttt εBxAx += −1  (3.25) 

where A and B are nxn matrices, x , x  and εt t-1 t are vectors (nx1) corresponding to day t and 

the previous day t-1.  The jth elements of the x  and the x  vectors are defined as t-1 t
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jtjt ,jt,jt,,1j1,-tj1,-t -X  xand  -X x μμ == −  (3.26) 

 

For conditions of no correlation between the error term and the weather variables and for 

errors with a mean of zero and a standard deviation of one, correlations can be maintained if 

the matrix A of Equation 3.25 is defined as 
1

01
−= MMA  (3.27a) 

and the matrix B is defined as  
TT
1

1
010 - MMMMBB −=  (3.27b) 

where M  is the symmetrical cross-covariance matrix defined as o
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and M1 is the asymmetrical serial covariance matrix defined as 
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The solution to matrix A is obtained using standard algorithms for working with matrices. 

The solution to matrix B is obtained using the classic eigenvalue formulation defined for the 

above matrices as 

0uIBB T =− 11 )( λ  (3.29) 

where BBT is a nxn matrix, λ1 is a scalar value called the eigenvalue and u1 is the 

eigenvector.  There are n solutions for λ  and corresponding ui i.  Eigenvectors will also be 

subject to the normalizing constraint that u Tu  = 1.  i i

 

The eigenvalue formulation can be manipulated as  

0uBBuuuuBBuuIBBu TTT =−=−=− ii
T
ii

T
iii

T
iii

T
i λλλ )(  (3.30a) 

Twhere u u  = 1 has been used.  We conclude  i i

ii
T
i λ=uBBu T  (3.30b) 
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By repeating this process for all eigenvectors, we have the following set of equations 
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 (3.31) 

where U is the matrix where the columns corresponding to each set of eigenvectors and D is 

a diagonal matrix where the elements are the square root of eigenvalues.  This requires that 

all eigenvalues are positive.   

 

By using matrix multiplication rules, we obtain 
1TT1TT DUDBBUUUBBU −− ==  (3.32a) 

and with additional multiplication 
11TTTTT DUDUDUDUBBBBUU −−−−− === T)()()( 111  (3.32b) 

where the matrix rule of (UT -1)  = (U-1 T)  has been used.  Let’s define B as 

DUB T)( 1−=  (3.33) 
TBy using the matrix rule that (E F)  = ET FT, we then obtain  

1−= UDBT  (3.34) 

and the conditions of Equation 3.32b are satisfied.  

 

In the WINDS model, the matrices A and B of Equation 3.25 are constant for five-day 

intervals.  For each of the five-day intervals, the elements of matrices M  and Mo 1 are defined 

by using the cosine function of the form of Equation 3.24.  As previously discussed, the 

appropriate cosine coefficients have been stored for cross correlation and serial correlation 

coefficients.  The Xstd in Equation 3.24 is replaced by the product of appropriate standard 

deviations.  The midpoint of the five-day interval is used in the cosine function.  The 

algorithm used to compute eigenvectors requires a symmetrical matrix for M1.  The upper 

diagonal elements of this matrix are used to define the lower diagonal elements.  The matrix 

A is computed using well-established algorithms to solve Equation 3.27a for each five-day 

interval within the year.   

 

The matrix B is obtained by Equation 3.33. The determination of the eigenvectors for the U 
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matrix and eigenvalues for the D matrix is an important step in this computation.  Initial 

attempts to maintain correlations among all weather variables resulted in negative 

eigenvalues, preventing a solution.  Therefore, the only non-zero off-diagonal elements are 

those for cross and serial correlations between (1) maximum and minimum temperatures, (2) 

maximum temperature and radiation, (3) maximum and minimum relative humidity, and (4) 

dewpoint temperature and minimum relative humidity.  If negative eigenvalues still occur 

with these variables, the correlations are systematically reduced until only positive 

eigenvalues are obtained.  A different set of elements are obtained for matrix B for each five-

day interval. 

 

Predicted statistical characteristics for maximum temperature and maximum relative 

humidity are shown in Figures 3.9 and 3.10, respectively.  The solid curves in these figures 

are the cosine curves obtained from observed climate data, and therefore effectively 

correspond to observed values.  The mean and standard deviation of the predicted maximum 

temperature are in good agreement to the observed trends.  The skew coefficient of normally 

distributed values is zero, and therefore the theoretical structure prevents the prediction of 

values resulting in a non-zero skew coefficient.  The predicted statistics of the maximum 

relative humidity are not as accurate as those obtained for maximum temperature.  This is, at 

least partially, caused by the WINDS model limiting the maximum relative humidity to 

100%.   
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Figure 3.9 Predicted Statistical Characteristics of Maximum Temperature at Rochester, MN. 
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Figure 3.10.  Predicted Statistical Characteristics of Maximum Relative Humidity at 

Rochester, MN.  

 

 

Predicted cross correlation coefficients among minimum relative humidity and selected 

weather variables are shown in Figure 3.11, and predicted serial correlation coefficients 

among dewpoint temperature and selected weather variables are shown in Figure 3.12.  The 

predicted cross and serial correlation coefficients are approximately zero for all variables, 

except those identified for correlation.  The coefficients for these variables are in good 

agreement to those observed.  The dewpoint temperature was selected to be correlated with 

minimum relative humidity.  Since minimum relative humidity is correlated to maximum 

relative humidity, some serial correlation with maximum relative humidity is still 

maintained.  
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Figure 3.11. Cross Correlation Coefficients between Minimum Relative Humidity and 

Selected Weather Variables at Rochester, MN. 
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Figure 3.12. Serial Correlation Coefficients between Dewpoint Temperature and Selected 

Weather Variables at Rochester, MN. 

 

 
Simulation of Daily Precipitation 
 

The simulation of daily precipitation is done by coupling a first-order Markov chain with a 

probability density function of daily rainfall depth.  The first step is the determination of 

whether the discrete precipitation state is a wet day, where a wet day is simply a day with 

precipitation.  This is done using the transitional probability of wet day given that the 

previous day is dry or the transitional probability of wet day given that the previous day is a 

dry day.  These transitional probabilities were computed from the daily climate data and are 

summarized using coefficients of the cosine function stored in the daily climate file.  If the 
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day is not a wet day, then by definition it is a dry day.  As previously discussed, the user can 

use the precipitation state of the day to determine the mean, standard deviation, and skew 

coefficient of the non-precipitation weather variables. 

 

The storm depth for a wet day is computed from a probability density function.  The user can 

select either an exponential, log-normal, extreme value type I, gamma (skew normal), or 

generalized extreme value (GEV) distribution.  The daily precipitation at the climate station 

was analyzed to determine the daily mean, standard deviation, skew coefficient, GEV spread 

statistic, and the GEV asymmetric statistics.  The appropriate value for any day can be 

determined from the coefficients of the cosine function stored in the daily climate file.  

 

The predicted daily precipitation statistics are shown in the observed cosine curves in Figure 

3.13 for Rochester, Minnesota.  The predicted daily precipitation statistics are in good 

agreement with observed trends.  The predicted and observed annual precipitation depth and 

average annual number of wet days are shown in Figure 3.14.  The WINDS model predicted 

these statistics with good accuracy. 

 

Prediction of Storm Characteristics 
 
Theoretical Framework 

 
Intra-storm characteristics of the WINDS model are predicted using the general framework 

proposed by Wilson and Headrick (1998) for a known storm depth and duration.  It is based 

on the theoretical concepts of Keifer and Chu (1957), often referred to as the Chicago 

hyetograph method.  The overall goal of the method is to develop storm patterns that match 

known depth-duration-frequency values (DDF) for a site.  The breakpoint form of the DDF 

equation was previously given by Equation 3.19.  It will be evaluated here in the following 

form: 
inb

i TFKP 1=  (3.35) 

where for T < Tb, Ki = K1 = bo and ni = n1 = b2 and for T > Tb, Ki = K2 = boTb
b3 and n  = ni 2 

=b2-b . 3
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Figure 3.13. Predicted Daily Precipitation Statistics for Rochester, MN. 

 

 

Figure 3.14. Predicted and Observed Annual Precipitation Depth and Number of Wet Days 

for Rochester, MN. 

Total storm depth is known for each wet day by using the algorithms discussed in the 
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previous section.  Later in this section, the methods to compute storm duration are described.  

The total storm depth (P ) and total storm duration (Ts s) are therefore known.  A key 

assumption is that cumulative depths for all durations less than the storm duration have the 

same frequency.   

 

A dimensionless form of Equation 3.19 is obtained by dividing both sides of this equation by 

P , corresponding to storm duration of T .  We then obtain  s s
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where P* is the cumulative precipitation normalized by storm depth and T* is the cumulative 

time (duration) normalized by storm duration.  The symbols α* and n have the following 

definitions 
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Dimensionless rainfall intensity is directly defined as 

sT/P
Td/Pd Tn

Td
PdI

s
**

*

*
* === α  (3.38) 

which is physically defined as the rainfall intensity normalized by the average intensity for 

the storm.   

 

Equation 3.36 can be used to determine the cumulative depth of precipitation within a storm.  

This equation assumes that the peak rainfall intensity occurs at the beginning of the storm.  A 

more general solution can be obtained for different times of peak intensity.  The solution 

approaches are shown in Figure 3.15.  The left-sided figure corresponds to the solution for 

peak intensity at T*=0 as given by Equation 3.36.  The right-sided figure is the rainfall 

intensity for a peak intensity at t =t* *p.  The endpoints of the right-side pattern are defined to 

equal the storm duration, that is, T* = t*R - t*L. 
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Figure 3.15.  Hyetographs Derived from DDF Curves. 

 

The fraction of the duration corresponding to the left (rising) limb (l ) is defined as *

p*
*

*p*
* T

t
l t

t L =
−

=  (3.39a) 

where the last equality is obtained using the entire storm duration (i.e., T  =1 and t* *L = 0).  A 

constant l* for durations within a storm is used in deriving the hyetograph.  The fraction of 

the duration corresponding to the right (falling) limb (r*) is defined as  

p**
*

*R*
* 11

T
t

r tl
t p −=−=

−
=  (3.39b) 

Cumulative precipitation depths are equal for the same duration for the two patterns shown in 

Figure 3.15.  The intra-storm intensities for the right-sided figure are defined as a power 

function of the form relative to the time of peak intensities.  Unknown coefficients A and B 

are defined such that the partition of precipitation between the rising and falling limbs is 

done in proportion to l  and r* * for their respective limb.  Let’s consider the change in 

cumulative depth over a small time increment, that is, ΔP* = I ΔT* *.  The partitioning of this 

precipitation depth between rising and falling limbs can be done using  

R
1-n

R****L
1-n

L**** nB T I r andnA T I l τταττα Δ=ΔΔ=Δ  (3.40a) 
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where the first equation corresponds to the rising limb and the second to the falling limb and 

where τL = t*p-t  and τ  = t  - t* R * *p.  By using Equation 3.38, ΔτL =l*ΔT , and  Δτ  =r ΔT* R * *, we 

obtain 
1
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and therefore A and B are defined as 
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The dimensionless rainfall intensities for the rising and falling limbs can then be written as 
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Let’s consider the relatively simple hyetograph for T  ≤ T .  For this case, αs b * = 1 and n = b2.  

By using the intensity defined by Equation 3.42, the cumulative depth for the rising limb of 

the hyetograph is defined as 
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where  
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Likewise, the cumulative depth for the falling limb of the hyetograph is defined as 

bsp
n

pp

t
n

pp
t p

p
p

TTttforttt

tdttnttd
t
t

tt
p

≤>−+

=−+=
−

−
+= ∫∫ −

,~)1(

~~)1()
1
t

(n)~(p

*****

*

~

0

1
**1**

t
1-n

*

**
1***

1

*

1

*

*

1

 (3.44a) 

where  
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Let’s now consider the hyetograph for T  > Ts b.  In addition to determining separate 

relationships for the rising and falling limbs, relationships are needed to account for each of 

the piecewise DDF curves.  By using the definitions for l* and r*, these durations are defined 

as 
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By using the intensities given by Equation 3.42, the cumulative depth for the rising limb and 

for 0 ≤ t* ≤ t*Lb can be defined as 
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and for t*Lb  ≤ t  ≤ t* *p can be defined as 
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where  is as previously defined. *̂t

 

By using the intensities given by Equations 3.42, the cumulative depth for the falling limb 

and for t*Rb ≤ t  ≤ 1 *
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and for t*p ≤ t* ≤ t*Rb 
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*
~twhere  is as previously defined.  

 

For storm of greater duration than two bursts, the time of peak precipitation intensity is 

selected by first dividing the total duration into four quartiles.  The probability of observed 

storms that had their peak intensity in the first and fourth quartiles was determined from the 

intra-storm characteristics routines and summarized by cosine coefficients to capture within-

year variations.  The probability of peak intensity in the second and third quartiles are 
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assumed to be equal and calculated by subtracting first and fourth quartile probabilities from 

one.  The time of peak intensity is randomly selected such that the frequency of occurrence in 

each quartile corresponds to those observed.  The time of peak intensity is taken at the 

midpoint of the quartile.  

 

Storm Duration  

 

The theoretical framework of the previous section requires a determination of the storm 

duration.  The user has three options for determining this parameter.  The most 

straightforward option is to assume no relationship with storm depth.  The cosine coefficients 

for the mean and standard deviation of duration are stored in the precipitation file and can be 

used to predict duration using the normal, log-normal, or extreme value type I distribution.  

The user can also select a linear relationship between duration and storm depth.  The cosine 

coefficients for the slope and the standard error are also stored in the intra-storm file. The 

user can select the normal or the extreme value type I distribution to add a random 

component. 

 

For the logistic duration model, the cosine coefficients for the statistical characteristics of the 

residuals are stored in the intra-storm file where the residuals are defined by Equation 3.10.  

By rearranging this equation, the normalized duration is determined as function of the 

normalized depth (x* = daily precipitation divided by daily precipitation depth) as 
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* *where cosine coefficients are stored in the intra-storm data file for β  and κl  and for the mean 

and standard deviation of ed
*.  

 

Fraction of Storm Duration with No Precipitation 

 

The WINDS model also simulates time periods within a storm that has no precipitation.  

Here the fraction of the storm duration with no precipitation (fraction of gaps) is a critically 

important parameter.  This observed fraction was examined with the intra-storm data.  
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Although cosine coefficients are available in the intra-storm data file to represent the mean 

and standard deviation of no-precipitation gap and to represent a linear relationship between 

no-precipitation gap and duration, the WINDS model uses the exponential relationship 

shown in Figure 3.6.  The current version of the WINDS model does not place a high priority 

on predicting accurately the no-precipitation gap and compromises this feature to obtain the 

proper depths within the storm.  By using the definition of residuals given by Equation 3.14, 

the fraction of no-precipitation gap can be predicted as 

)(exp)(exp1 ***
geyg −−= κ  (3.49) 

*where cosine coefficients are stored in the intra-storm data file for κ  and for the mean and 

standard deviation of eg
*.  The extreme value type I distribution is used as the distribution for 

eg
*.   

 

The WINDS model computes cumulated precipitation depth for a fixed storm interval, 

corresponding to “bursts” of precipitation.  The fraction of gaps is only applied if the total 

storm duration is greater than two bursts.  A gap in precipitation is not allowed at the time of 

peak precipitation intensity and the nearest surrounding bursts.  When there is a no-

precipitation time interval, the intensity of subsequent bursts is increased to maintain the 

same total depth.  This concept is illustrated in Figure 3.16. 

 

In addition to the fraction of no-precipitation gaps, the persistency trend might also be of 

interest; that is, the probability that the next time interval within a storm has precipitation is 

dependent on whether the current time period has rain. A first-order Markov chain is used 

where the transitional probabilities of wet time period given that the previous time period is 

also wet and the probability of a wet time period given that the previous time period was dry.  

These transitional probabilities were determined from intra-storm data, and the results are 

summarized using cosine coefficients in the intra-storm file.   
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Figure 3.16.  Impact of No-Precipitation Gap on Intensity. 

 

The transitional probabilities obtained from cosine curves are adjusted to place additional or 

fewer no-precipitation gaps during the simulation of the storm pattern.  This adjustment is 

shown in Figure 3.17.  In this figure, N  and ng g are the total number of no-precipitation time 

periods necessary to achieve the overall fraction of no-precipitation gaps and the current 

count of no-precipitation time periods, respectively; Nb and nb are the total and current 

number of time periods for the storm.  The x-axis is then the ratio of the remaining time 

periods needed to achieve the overall no-precipitation gap and the total remaining time 

periods.  If this ratio is zero, then all the time periods for no-precipitation gaps have been 

used.  The probability of obtaining another no-precipitation gap is then set to zero preventing 

any more no-rain gaps.  If the x-axis value is one, all of the remaining time periods must be 

no-precipitation gaps and therefore the transitional probabilities are set to one. Breakpoints in 

the curves correspond to the transitional probabilities that are determined from the cosine 

coefficients.  They correspond to the transitional probabilities at the beginning of the storm. 

 

For a small storm duration of only two storm bursts, the WINDS model distributes the depth 

among the two bursts based on the fraction of the total precipitation for two burst storms 

analyzed from the intra-storm data file.  Cosine coefficients are used to represent within-year 

variations, and these coefficients are stored in the intra-storm file.   
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Figure 3.17.  Changes in Transitional Probabilities within Storms. 

 

Additional Features 
 

One of the advantages of using normalized statistics for the mean and standard deviation for 

the weather variables is that it allows the WINDS model to more easily adjust predicted 

values for locations whose weather differs from that of the nearest climate/intra-storm 

station.  For example in mountainous terrains, temperature varies with elevation, and 

therefore temperatures corresponding to climate station at a low elevation do not correspond 

to those of a location at a higher elevation.  Although it is unlikely that an adequate time 

series data set exists at the higher elevation for determining the parameters of the WINDS 

model, the user will often have sufficient information to estimate the annual mean 

temperature and possibly the standard deviation.  The user has the option of changing the Xstd 

normalizing statistics of Equation 3.24 to the mean and/or standard deviation of the study 

location.  The WINDS model will then simulate daily climate variables to correspond to the 

mean (and possibly standard deviation) at the study location.  Trends of the weather variable 

relative to its normalizing value are the same as that of the climate station.  Radiation is 

latitude dependent.  Therefore, in addition to changing the mean and standard deviation, the 

user can improve the simulation of radiation by specifying the latitude for his/her location.   
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The primary goal in the development of the WINDS model was to predict different weather 

scenarios for a particular year.  Nonetheless, the WINDS model can also be used to predict 

weather in future years.  Another advantage of using normalizing statistics is the ease in 

which climate change can be simulated.  For this type of application, the Xstd normalizing 

statistics of Equation 3.24 are simply allowed to vary with year of simulation.  The user can 

vary both the mean and standard deviation Xstd with year.  The following equation is used in 

the WINDS model.  

)]()()(1[)( sinexp, yearFyearFyearFXyearX linstdstdt +++=  (3.50) 

where Xt,std is the varying normalizing coefficient with year of simulation that can be 

determined as the sum of an exponential function, a periodic sine function, and/or a linear 

function.  These functions are defined as  

))exp(1()( exp,maxexp,exp yearBAyearF rate−−=  (3.51a) 

)1(sin)(
sin,

maxsin,sin
perB

yearAyearF −
=  (3.51b) 

)1()( , −= yearByearF slopelinlin  (3.51c) 

where the A and B coefficients are entered by the user.  The determination of these 

coefficients is not a trivial task.  The functions in Equation 3.50 can be set to zero by using 

zero A coefficients or Blin,slope coefficients.  The above equations are applied to both the mean 

and standard deviation of the weather variables. 

 

Five-day weather forecasts are frequently available and the user may wish to use these 

forecasts in the simulations of different weather scenarios.  The mean and standard deviation 

values obtained from the cosine function for the non-precipitation variables are overridden by 

five day forecast information provided by the user.  Forecast expected value is taken as the 

mean value and the possible range in value is used to estimate the standard deviation.  

Standard deviations are defined to increase from the first day to the fifth day of the forecast.  

The percent chance of rain is used to override the probability of wet day given a dry day and 

the probability of a wet day given a wet day.  
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Chapter Four 

Modeling Algorithms of the WATER Model 
 

Introduction 
 

Assessment of the effectiveness of sediment control practices requires that the weather 

predicted from the WINDS model be used to simulate the runoff and erosion from hillslopes.  

Important hillslope processes are shown in Figure 4.1.  They include surface runoff processes 

of which infiltration and overland flow are particularly important, plant processes related to 

plant growth and evapotranspiration, and erosion and sediment transport that include 

detachment by raindrop impact and shear forces from surface flows.  At the toe of the 

hillslope, sediment deposition is common and occurs when the sediment load exceeds the 

transport capacity of the flow.  

 

The WATER model has more than one algorithm to simulate the key components.  The 

selection of the best algorithm is closely tied to the availability of their parameters and the 

expertise of the user.  Since the parameter sets for construction site is quite limited, the best 

modeling algorithms will often not be the most theoretically appealing.   However as future 

studies provide greater insight into processes and a larger data base is established, the 

selection of the best modeling algorithms will likely move to more rigorous process-based 

relationships. 

 

The description of the algorithms in the WATER model is divided into those used for runoff 

processes, plant processes, and erosion and sediment transport.  Prediction of runoff 

processes is largely dependent on the methods to predict infiltration, surface depressional 

storage, and overland flow.  Important algorithms for plant processes are those used to 

predict plant growth and evapotranspiration.  Three different levels of modeling rigor are 

used for erosion and sediment transport.  The simplest methods are those based on the 

Universal Soil Loss Equation (USLE).  More process-based methods based on the approach 

of the Water Erosion Prediction Project (WEPP) model are available to the user.  The most 

rigorous algorithms, but the least tested, are based on recent work done at the University of 
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Minnesota. 

 

Estimation of soil parameters is an important component in modeling runoff and erosion 

from construction sites.  A separate class is used to estimate these parameters. Different 

algorithms were selected to allow the user to select the best method given the information 

available for his/her design.  Routines have been developed to predict matrix potential and 

relative conductivity using Brooks-and-Corey (1964) and van Genuchten (1980) 

relationships and other soil parameters such as porosity, residual moisture content, bubbling 

pressure, pore size distribution, moisture content at field capacity, moisture content at wilting 

point, and saturated conductivity.  Estimates of these later parameters can be obtained using 

the mean values by soil texture of Rawls et al.’s (1989) data set of more than 5000 samples.   

Predictive equations proposed by Rawls et al. and developed for the WEPP model (Flanagan 

and Nearing, 1995) is also available to users. 
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Figure 4.1.  Important Hillslope Processes for the WATER model. 

 

Runoff Processes 
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Infiltration and Surface Depressional Storage 

 

Infiltration is a critical component of the runoff processes because it divides rainfall into 

surface and subsurface flow paths.  A number of different infiltration methods has been 

coded and is available to the user.  These methods are (1) Green-Ampt-Mein-Larson 

(GAML) infiltration model (Mein and Larson, 1973), (2) two-layered GAML model, (3) 

dual-porosity GAML model, (4) Holtan infiltration method (Holtan, 1961), (5) Horton 

infiltration equation equation (Horton, 1939), (6) infiltration based on the curve number 

method (SCS, 1972; Hjelmfelt, 1980), and (6) constant infiltration rate of the phi-method.  

Once again, the selection of the best infiltration method is dependent on the type of problem 

and availability of parameters.  Only information on the GAML model and the curve number 

method is summarized here. 

 

The Green-Ampt’s infiltration equation is based on the idealized moisture content profile of 

box shape corresponding to sharp wetting front.  The infiltration rate is defined as 
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where f is the infiltration rate, K  is the effective saturated conductivity, θ  and θs i s are the 

initial and effective saturated moisture content, respectively, ψf is the average suction at the 

wetting front and F is the cumulative infiltration depth.  Cumulative infiltration depth is 

predicted as 
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where F  and ts s are the infiltration depth and time at effective surface saturation.  Mein and 

Larson (1973) used the Green and Ampt’s approach to estimate F  as s
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where i is a constant rainfall intensity.  For constant rainfall intensity, ts is obtained by simply 

dividing Fs by i.  In the WATER model, the Mein and Larson’s approach is modified for 

unsteady rainfall intensity using the concepts given by Chu (1978).  Li et al.’s (1976) simple 

two-step method is used to solve the GAML model efficiently.  The GAML model is only 

53 



 

used when the rainfall intensity is greater than the infiltration capacity given by Equation 4.1.  

If the rainfall intensity is less than the infiltration capacity, the infiltration rate is taken as the 

rainfall intensity.   

 

Abstraction is the removal of rain from surface runoff processes.  In addition to infiltration, it 

includes surface depressional storage and vegetative interception, of which surface 

depressional storage is of greater importance.  Initial abstraction is the surface depressional 

storage, vegetative interception and infiltration (Fs for the GAML model) prior to the start of 

runoff.  Most of the total surface depressional storage and vegetative interception occur prior 

to runoff.  Rainfall excess depth is defined as the difference between rainfall and abstraction 

depths.  Excess depths drive the detachment and transport of sediment by surface runoff.   

 

Simple vegetative interception models are used in the WATER model where the user 

specifies whether the relative interception depth as large, medium or small.  Adjustments for 

wind speed are also possible.  Two methods for surface depressional storage are available to 

the user.  The simplest approach is to specify whether the relative depth is large, medium, or 

small.  A more rigorous model is available using the results of Onstad’s (1984).  Surface 

depression storage depth is then predicted as function of the roughness and slope of the 

surface by the following equation. 

)012.0031.0112.0( Lrrd SRRSS −+=  (4.3) 

where SS  is the surface depressional storage (mm), Rd r is the roughness of the surface and SL 

is the slope of the land.   

 

The curve number method is a two stage model that directly predicts rainfall excess.  If the 

cumulative precipitation depth is less than initial abstraction, then the excess depth is zero.  If 

the cumulative precipitation depth is greater than initial abstraction, the excess depth is 

predicted as 

a
a

a IPif
SIP

IPZ >
+−

−
=

2)(  (4.4a) 

where Z is the cumulative excess depth for a cumulative precipitation depth P, Ia is the initial 

abstraction, and S is a maximum abstraction depth related to a curve number (CN) by  
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101000
−=

CN
S  (4.4b) 

The user can specify an initial abstraction depth, estimate the initial abstraction from 

vegetative interception and surface depressional storage method previously discussed, or use 

the default value in the NRCS curve number method where  

SI a 2.0=  (4.4c) 

 

Overland Flow 

 

As excess water travels over the surface, it combines with water from other areas to increase 

the volumetric flow rate.  As the rate increases, the ability of the flow to detach and transport 

particles also clearly increases.  The user is given several unit hydrograph options and four 

kinematic wave approaches.  Unit hydrograph theory is used to predict flow rate assuming 

(1) a linear reservoir, (2) a series of linear reservoirs, (3) a time-area curve coupled with a 

linear reservoir, (4) a linear reservoir for surface runoff and a linear reservoir for channel 

processes, and (5) time-area-excess-depth curve linked with a linear reservoir.  The kinematic 

wave options are based (1) equilibrium flow response, (2) constant excess intensity response, 

(3) general numerical solution for rectangular surface, and (4) general numerical solution for 

a converging surface.  The first two kinematic wave options are only recommended for small 

drainage areas.   

 

Unit hydrograph theory is a conceptual modeling approach widely used to predict surface 

runoff.  A unit hydrograph is defined as a hydrograph of one unit of surface runoff, usually 

for specific duration. The approach can be applied to a watershed scale that includes both 

overland and channel flow processes.  Unit hydrographs were originally defined using 

observed data, but the theory has been expanded to include process-based concepts. The 

following notation is used here: Δt is the duration of rainfall excess burst, DUH is the unit 

hydrograph for storm burst of Δt, IUH is the instantaneous unit hydrograph corresponding to 

Δt → 0, ΔZ is the rainfall excess depth for storm burst defined as the product of rainfall 

excess intensity (ie) and Δt, and Q is the flow rate of runoff hydrograph.   
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Unit hydrograph theory is based on properties inherent in linear differential equations.  One 

of these relationships is the principle of proportionality that states that the flow rates are 

proportional to excess depths.  Another important relationship is the principle of 

superposition.  This principle allows a complex input to be divided into simpler components 

and then solving these simpler components to determine solution for the original complex 

input.  For runoff, the principle of superposition allows the flow rate to be determined using 

the convolution integral defined as 

 d) ()i -IUH(t Q(t) 
t

0
e∫= τττ  (4.5) 

where ie is the rainfall excess intensity which is known from the rainfall hyetograph 

infiltration and surface depressional storage relationships of the previous section.  The 

WATER model allows the user to select several different instantaneous unit hydrographs 

(IUH).   

 

A numerical solution to Equation 4.5 is shown in Figure 4.2 for three bursts of excess.  Each 

burst resulted in a runoff hydrograph.  These runoff hydrographs are lagged and added to 

determine the overall response. 

 

Kinematic wave approach is based on the coupling of the conservation of mass with the 

equation of motion with negligible inertial term and pressure forces.  It assumes broad sheet 

flow for overland conditions.  The kinematic wave solution for these conditions can be 

written as 

 i qq 
x
q

e
1- =
∂
∂

+
∂
∂

t
ββα  (4.6a) 

where q is the flow rate per unit width and α and β are parameters defined from a rating 

curve or from Manning’s equation.  For Manning’s equation, β = 3/5 and α = 

[n/(1.49SL
1/2)]β, where n is Manning’s n and SL is land slope.  In the WATER model, the 

following approximation is used to solve the above equation (Chow et al., 1987) 
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where i and j are grid locations in x and t, respectively.  Checks are used for the special case 

of no flow on the surface. 
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Figure 4.2.  Numerical Solution to the Convolution Integral for Three Rainfall Excess Bursts. 

 

Plant Processes 
 

Plant Growth Modeling 

 

Plant growth at construction sites provides vegetative cover for erosion control and leaf 

canopy that influences evapotranspiration. Plant models are commonly used for agricultural 

crops (Wilson and Jamieson, 1984; Jones et al., 1986).  Generally, for these applications, 

competition among different types of plants is relatively unimportant.  Weeds are controlled 

by effective management practices.  However for many construction sites, the establishment 

of any vegetation is often important in reducing erosion.  Less interest lies in the growth of a 
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particular plant species 

 

Two general approaches are available in the WATER model to simulate plant growth.  The 

simplest approach uses empirically derived biomass curves for a community of plants.  The 

accuracy of this approach is dependent on available data for the plant community at a given 

construction site.  The other approach is more rigorous and uses concepts from crop growth 

models.  

 

The process-based modeling approach represents the potential plant community at a site by 

several different plant groups.  Germination and other growth stages are triggered by heat 

unit indices.  The triggering heat unit indices vary among the plant groups.  Prior to reaching 

maturity, potential daily biomass for each plant group is estimated using the photosynthetic 

active radiation.  Observed biomass as a function of photosynthetic active radiation for 

eleven different crops is shown in Figure 4.3.  The potential biomass for any given day is 

obtained as 

 ])65.0(exp1(02092.0 TsbmmT LAIRPb −−=  (4.7) 

where Pbm is a plant factor for converting photosynthetic active radiation, Rs is the solar 

radiation obtained from the WINDS model, and LAIT is the leaf area index.  A larger leaf 

area provides more available energy for plants to grow.  After plant maturity, different set of 

relationships are used to consider the biomass of the plant community.  

 

Equation 4.7 allows the potential biomass to be estimated.  Adjustments in this potential 

biomass are necessary for non-optimal conditions at construction sites.  As an example, the 

reduction in the photosynthetic rate as a function of an air-temperature stressor is shown in 

Figure 4.4.  In the WATER model, reduction in optimal biomass is done for the following 

stressors: (1) seed availability, (2) soil moisture availability, (3) availability of nitrogen, (4) 

availability of phosphorous, (5) air temperature, and (6) leaf area competition among plant 

groups.  The impact of all of these stressors are represented by the general relationship 

 )ˆˆ(1 2
foptfs SSck −+=  (4.8a) 

where ks is the stressor factor, c is a definable factor that depends on a minimum or 
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maximum limit for k ,  is a normalized stressor defined as fŜs
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where Sfm is the stressor value where k  equal zero, Ss fopt is the stressor value where ks=1 and 

κ is asymmetrical adjustment factor.  The parameters of the stressor equation are shown in 

Figure 4.4 using the general form of y = y  + (y -y )k , where y  = 0.  min max min s min
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Figure 4.3. Relationship between Biomass and Photosynthetic Active Radiation. 

 

The application of these concepts to a plant community of different plant groups is shown in 

Figure 4.5.  Total biomass and leaf area index is first computed for the entire plant 

community.  This total biomass is then distributed among the different plant groups.  Each 

plant group has a unique set of phenological properties (such as early emergence), efficiency 

of biomass conversion, and stressor properties (such as tolerance to low soil moisture 

content).  Plant groups that have characteristics that are best suited to site conditions receive 

a greater fraction of the total biomass. This competition among plant groups determines the 

dominate plant group.   
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Figure 4.4 Plant Stress as Function of Air Temperature.  
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Figure 4.5. Computations for a Community of Plant Groups. 
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Evapotranspiration 
. 

Evapotranspiration is a critical process for determining the moisture content of the soil, 

which is used for computing infiltration for individual storms and for simulating plant 

growth.  Users have a choice for predicting potential ET using pan evaporation, Priestly-

Taylor, Penman and Penman-Monteith methods (Jansen et al., 1990).  Crop coefficients and 

the leaf-area index method are used to estimate potential ET for site conditions (Burman et 

al., 1983; Ritchie and Barnett, 1971).  The impact of water availability in the soil is modeled 

using either the simple linear relationships proposed by Larson (1985) or by using 

relationships that relate leaf resistance to soil moisture potential.  Only the more rigorous of 

these options will be presented here. 

 

The Penman-Monteith method is based on an energy balance for a plant canopy.  Important 

energy terms are shown in Figure 4.6. The net radiation, Rn, is defined as the net radiation 

into the plant canopy and can be estimated by coupling the solar radiation from the WINDS 

model with albedo and other factors. Net radiation is the dominate energy term for the 

control volume. The sensible heat flux, Hs, is defined as the net heat flux leaving the canopy 

as the result of temperature difference, primarily through a plane located at the top of the 

canopy, but possibly also by the net advected heat term.  Sensible heat is an important energy 

term. The sensible heat flux, G, is defined as the net heat flux leaving the plant canopy to the 

soil.  Although some researchers/modelers consider G for short time steps (less than a day), it 

is usually small when integrated over an entire day. The latent heat, RET, is defined as the 

heat used for evapotranspiration for a reference crop. The rate of change in energy of the 

canopy, ΔS, is typically negligible. Other negligible energy terms are the viscous dissipation 

work and biological (non-RET) and chemical activities.  

 

By using the slope of the saturation vapor pressure-temperature curve to approximate the 

temperature of the leaf surface, by neglecting insignificant energy terms shown in Figure 4.6, 

and by using resistance-type of relationships for heat and vapor movement, the Penman-

Monteith method can be derived as 
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where Δ is the slope of the saturation vapor-pressure-temperature curve, es is the saturated 

vapor pressure, ea is the vapor pressure (ea = ea
s rh), ρ is the air density, cp is the specific heat 

at constant pressure, γc is the psychrometric constant, and rlv and rah are the stomatal 

resistance and heat-atmospheric resistance, respectively.  The heat-atmospheric resistance 

can be derived from turbulent flow theory for log-velocity profiles as  
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where κv is the von Karmon constant and U(z) is the velocity measured at a height of z.  The 

remaining parameters are dependent on the type of plant.  For a reference crop of alfalfa, the 

stomatal resistance can be estimated as (Jansen et al. 1990) 

4.1)ln(5.2 
5.0
100

−== hLAIwhere
LAI

rlv  (4.10b) 

and ψ =ψh m=0, Zm=0.123 h, Z  = 0.1 Zh m, and d=0.67 h, where h is the canopy height. 
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Figure 4.6.  Energy Balance for Plant Canopy. 
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Potential evapotranspiration for the reference crop of alfalfa is predicted by Equation 4.9 for 

the parameters as defined by Equation 4.10b.  This potential evapotranspiration needs to be 

adjusted to consider other plant types at different stages of growth.  In the WATER model, 

the adjustment factor can be determined from standard growth curves or by using the leaf 

area index.  The leaf area index is characteristic of the plant community predicted by the 

plant growth algorithms.  The ratio of potential plant transpiration and RET as a function of 

the leaf area index is shown in Figure 4.7.  For LAI < 3, this ratio is predicted in the WATER 

model as  

3 52.0 <= LAIforLAI
RET
Tp  (4.11) 
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Figure 4.7.  Potential Transpiration Ratio as Function of Leaf Area Index. 

 

Actual evapotranspiration is less than potential evapotranspiration when there is insufficient 

water in the soil matrix.  One approach in the WATER model for predicting this reduction is 

based on the potential difference between the soil matrix and the plant leaf.  As discussed by 

Campbell and Norman (1998), the relative humidity inside the leaf stomata is nearly one, 
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even under stressed conditions.  The leaf is therefore unable to control transpiration by 

substantially dropping its leaf potential.  Reduced transpiration can, however, be obtained by 

closing its stomata (increasing leaf resistance).  Figure 4.8 shows changes in leaf resistance 

as a function of leaf potential.  Also shown in this figure are the mathematical 

approximations used in the WATER model to represent leaf resistance.  
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Figure 4.8.  Leaf Resistance as Function of Leaf Potential.  

 

By using the relationships shown in Figure 4.8, Brooks-and-Corey relationship for soil 

matrix potential and considerable algebraic manipulation, the ratio of actual transpiration to 

the potential transpiration (without water stress) can be defined as  
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where Aw is the available water in the soil, Awc is a breakpoint available water value, Φs
* is a 

dimensionless soil potential, and k, m * *, m1 2 , and λ are leaf resistance parameters as shown in 

Figure 4.8.   
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Erosion and Sediment Transport 
 

USLE-based Routines 

 

The Universal Soil Loss Equation (USLE) was developed as a tool for soil conservationists 

to use for developing farm management plans to control erosion and maintain soil 

productivity from agricultural lands.  It is best suited to predict average, annual soil loss. An 

advantage of the USLE-based approaches is the relatively large data set used to determine 

erosion parameters.  The USLE is based on more than 10,000 plot-years of data.  Substantial 

efforts were undertaken to improve the prediction accuracy of the original USLE resulting in 

the Revised Universal Soil Loss Equation (RUSLE).  Of particular interest with this 

modification is the calculation of the slope length coefficient as a function of a rill-to-interrill 

erosion parameter.  

 

One of the erosion modeling algorithm in the WATER model is the modified Universal Soil 

Loss Equation (MUSLE) (Williams, 1977).  This method was developed for storm events.  It 

replaces the rainfall factor in USLE with a runoff factor that was evaluated using 778 storms 

with a variety of different watersheds.  The MUSLE predicts total sediment yield from the 

construction site.  Sediment yield is predicted by the following equation 

PCSLK) Q (V95Y 0.56
p=  (4.13) 

0.56where 95 (VQ )p  is the runoff erosion factor, Y is the sediment yield at the outlet, V is the 

volume of runoff, Qp is the peak flow rate and where K, L, S, C, and P are the USLE factors 

for erodibility, slope length, slope steepness, cover and practice, respectively.  

 

The USLE-based method of SLOSS (Wilson et al, 1982) is also available to the user of the 

WATER model.  With this method the detachment is divided into interrill and rill 

components, where the USLE rainfall erositivity is used to compute detachment from interrill 

areas and the volume and peak flow rate is used to determine detachment from rill areas.  

Deposition is computed if the sediment load in rills exceeds the transport capacity of the 

flow.  The transport capacity of the flow is computed using Yang’s unit stream power 
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equation (Yang, 1973). 

 

WEPP-based Routines 

 

The Water Erosion Prediction Project (WEPP) was developed as an alternative, more 

process-based approach to USLE for predicting annual average erosion from agricultural 

lands (Flanagan and Nearing, 1995).  The overall framework for this project is similar to that 

used by the WATER model.  Erosion in the WEPP model is divided into interrill and rill 

components. In contrast to the SLOSS approach, the parameters for the WEPP modeling 

approach are not based on the USLE data set.   

 

The WEPP-based form of interrill detachment used in the WATER model is  

iii GCiK 2
iD =  (4.14) 

 is the interrill detachment, Kwhere Di i is the interrill soil erodiblity, i is the effective rainfall 

intensity, C  and Gi i are the interrill canopy and ground cover factors.  The rill detachment by 

surface runoff is estimated as 

c
c

d
cr for

T
GWPlK ττττ >−−= )1()()(Dr  (4.15) 

where Dr is the rill detachment rate, Kr is the rill erodibility, τ is the bed shear defined as 

(ρgRS)1/2, τc is the critical bed shear, l is the length of the rill, WP is the wetted perimeter, Gd 

is the downslope sediment load, and Tc is the transport capacity of the flow.  A simple mass 

balance is maintained in the rill to estimate Gd. This mass balance can be used to compute 

deposition in the toe area of a typical hillslope.  The WEPP-based algorithms assume a fixed 

number of rills per unit area, corresponding to a set of parallel rills for a given hillslope. 

 

University of Minnesota’s Algorithms 

 

The third set of erosion modeling algorithms available to the user is based on methods 

developed at the University of Minnesota in the early 1990s.  These algorithms were 

developed to improve the prediction of detachment by surface runoff.  Instead of the fixed 

number of rills approach used in the WEPP-based methods, the University of Minnesota’s 
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algorithm uses a dendritic network of rills (Wilson, 1991).  This approach is based on an 

analysis of the link characteristics of small-scale surface drainage networks measured from 

erosion plot data. Networks are predicted by combining link characteristics with the topology 

defined by an infinite topologically random network.  Power relationships are used to 

describe the shape of rills that are allowed to expand with drainage area.  

 

Wilson (1993) proposed a fundamentally-based flow detachment model that is also available 

in the WATER model.  This detachment model provides a framework for isolating flow from 

soil characteristics. Flow characteristics are estimated using turbulent detachment forces at 

the boundary.  Turbulent characteristics are represented by the extreme value type I 

probability density functions.  In contrast to the WEPP-based models, the role of sediment 

load on particle detachment is obtained by the suppression of turbulence by suspended 

sediment.  
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Chapter Five 

Summary and Conclusions 
 
 

The WATER (Watershed Assessment Tool for Environmental Risk) model was developed to 

be a tool to assess the effectiveness of different sediment control practices.  Determination of 

parameters and rigor of modeling approaches are important factors in the development and 

use of models.  Rigorous models typically have many parameters that are frequently 

unknown.  Application of these models to a particular site is then difficult.  Overly simple 

models may have few parameters but are unable to capture important components of erosion 

and sediment transport.  The effectiveness of alternative sediment control practices is then 

not adequately modeled.  Models of erosion and transport of sediment from construction sites 

need to be sufficiently rigorous to allow sediment control practices to be evaluated and to 

have parameters that can be determined for site conditions.  

 

The risk assessment is performed with the WATER model by simulating many years of 

different weather conditions at the construction site for different sediment control plans.  

Therefore the WATER model needs to adequately represent the weather conditions, the 

runoff characteristics, erosion processes, and plant growth.  In addition, the WATER model 

needs a user-friendly interface.  From the many years of different weather conditions, 

probabilistic inferences are possible for each of the sediment control options.  

 

A particularly important component of the WATER model is the prediction of daily climate 

conditions and storm characteristics.  The prediction of these characteristics is done using the 

WINDS (Weather Input for Nonpoint Data Simulations) model.  The development of the 

WINDS model was done in two steps.  First, the statistical characteristics of historic weather 

records were analyzed.  Separate routines were developed to efficiently determine the many 

parameters that were derived from the observed data sets.  These routines were used to 

analyze daily climate variables as well as intra-storm characteristics from 15-minute 

precipitation data.  Within-year variations of key statistics were represented by coefficients 

of a fitted cosine function.  Data from more than 200 climate and 200 15-minute precipitation 

stations have been evaluated and are available for use by the modeler.   
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The second step in the WINDS model development was the implementation of algorithms to 

predict future weather conditions with, ideally, similar statistical properties of those 

observed.  The user has several options in the simulation of weather including different 

response for wet and dry days, cross correlation among weather variables, incorporation of 5-

day forecast information, and different probability density functions for representation of 

different weather variables.  The prediction of intra-storm characteristics is especially 

important for modeling erosion from small construction sites.  A hyetograph method was 

developed based on DDF (Depth-Duration-Frequency) curves.  Important parameters for this 

method include the storm duration, fraction of total duration without precipitation, and the 

coefficients of the DDF curve.  A comparison of predicted weather and storm characteristics 

with those observed was very good.   

 

The WATER model has three major components for representing hillslope processes.  They 

are: (1) surface runoff, (2) plant processes, and (3) erosion and sediment transport.  Since 

there is no one best modeling approach for all sites, the WATER model allows the user to 

select different modeling algorithms for most of these processes.  Noteworthy approaches for 

infiltration are the curve number method and the GAML (Green-Ampt-Mein-Larson) model.  

The user has choice between unit hydrograph theory and kinematic wave solutions for 

overland flow.  A simple empirical approach and process-based algorithm are available to the 

user for simulating plant growth.  Penman-Monteith method is the most rigorous of the 

approaches available to predict reference crop evapo-transpiration.  Relationships are used to 

account for different types of plant groups and for water availability in the soil.  Algorithms 

for erosion and sediment transport range from the relatively simple USLE-based approach to 

the more recent erosion work developed at the University of Minnesota. 
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