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EXECUTIVE SUMMARY 

Truck parking can become a major safety concern when the driver lacks timely information on where 
there is available parking. The driver must then decide between either continuing to drive fatigued to 
search for available parking or to park illegally, for example, on highway shoulders and ramps.  Either 
situation poses a serious safety concern.  Under such circumstances when law enforcement officers 
encounter trucks parked illegally under this scenario, they may feel obligated to wake up the drivers to 
move their vehicles, thus forcing them to continue driving (perhaps beyond the legal HOS limit) to again 
search for legal parking. There is also a loss of productivity and increased fuel emissions as a result of 
the additional time drivers spend finding available parking. 

Many previous studies that have pointed out capacity shortages on specific freight corridors contend 
that reliable parking notification is also needed to utilize the capacity effectively, preferably by using 
Intelligent Transportation Systems (ITS) approaches; there were many cases documented that indicate a 
mismatch between actual truck parking space availability and a driver’s perception of the availability.  
This study focused on developing and testing a novel comprehensive Truck Parking Availability System 
(TPAS) along the Interstate-94 corridor in Minnesota. 

There were a few important requirements that needed to be met in designing such a system. First, the 
system could not infiltrate or disturb the pavement surfaces or substructures.  Second, the system must 
be operational 24/7 and perform any recalibrations without any human intervention.  Such 
requirements led naturally to camera-based approaches for parking detection. A novel multi-camera 
approach was developed to directly detect designed truck parking stall occupancy for three state-
sponsored truck parking facilities, accessible from the eastbound direction along the corridor, all within 
100 miles west of Minneapolis-Saint Paul.  

 



Three information delivery mechanisms were tested extensively through a concept of operations field 
test: 1) a commercial operator accessible web parking information portal, 2) an in-cab geolocation 
application that integrated within an existing on-board logistics device to support driver and carrier trip 
operations, and 3) roadside electronic message signs. Second, the detection performance was evaluated 
through extensive observations of historical data harvested under a variety of parking and 
environmental scenarios.  Per space detection performance is typically better than 95 percent, which 
correlated with overall space occupancy count discrepancies between ±1 to ±3 counts.  Generally the 
system is robust to various sources of observable factors recorded during the evaluation.  A detailed 
analysis of detection performance and the sources of detection errors are provided within the report.  

As part of the study user evaluations from commercial drivers and operators before and during the field 
tests were conducted.  In short, there was a clear impact in driver and carrier attitudes and perceptions 
for utilizing TPAS notifications to more efficiently plan and complete long-haul trips.  More than half of 
all users traveling along the corridor (drivers and operators) indicated “positive” or “very positive” 
impacts of TPAS on their productivity.  The results also provided several important insights that can 
serve as a guide to design region-wide parking notification systems to best meet their needs.  For 
example, the evaluations quantified preferable locations of roadside changeable message boards, and 
their perceived importance when compared to other information delivery mechanisms, as well as the 
desired reliability and accuracy of the parking availability notifications that would be displayed.  

The system has continuously monitored parking availability between one year and four months and 
more than two and a half years, starting in early 2013, demonstrating that reliable operation and 
detection is feasible with this approach.  The current architecture was integrated to test the 
aforementioned delivery mechanisms using a mid-tier platform to archive historical parking status data 
as well as disseminate truck parking notifications.  It is possible to build in other information delivery 
protocols to fit other architectures suited for region-wide, interstate truck parking availability standards 
and delivery mechanisms, should the TPAS approach be adapted to a larger regional truck parking 
notification system.  
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CHAPTER 1:  INTRODUCTION 

The reliance on domestic truck-borne freight is unquestionable.  In year 2012 sixty seven percent of all 
goods and materials by weight were shipped by Commercial Heavy Vehicles (CHVs). By year 2040, the 
Federal Highway Administration projects an increase of over five billion tons will be shipped by CHVs, 
representing sixty six percent of all goods and materials, which implies that there will be an increase of 
CHV trips completed on our roadways for the foreseeable future [1].  Furthermore, it is not unusual for 
long haul drivers to receive relatively short lead trip and delivery times.  Such logistical constraints must 
also be balanced with ensuring CHV drivers obtain appropriate rest periods to avoid driving fatigued.   
Accordingly, the Federal Commercial Motor Vehicle Safety Administration (FMCSA) continues to 
mandate federal Hours of Service (HOS) regulations as a tool to reduce the risk of CHV crashes due to 
driver fatigue1.  

Compliance with the current FMCSA HOS regulations, commonly referred to as the “11-14-10 rule”, 
requires that drivers can drive no more than 11 hours in a single day (with up to 3 additional hours of 
non-driving on-duty time) after which a period of 10 hours of rest is then required before going back on-
duty to operate their vehicle again.  During their trips drivers are also required to take a minimum of 30 
minutes of rest for every 8 hours of driving. Currently, in addition to daily trip HOS rules, there is also a 
consecutive maximum on-duty period of either 70 hours in 8 days or 60 hours in 7 days, after which the 
driver must be off duty for 34 hours to ‘reset’ the clock.  Any of these situations require that the driver 
finds available legal parking to stop and rest. 

Truck parking can become a major safety concern when the driver lacks timely information on where 
there is available parking. The driver must then decide between either continuing to drive fatigued to 
search for available parking, or to park illegally, for example on highway shoulders and ramps. The latter 
is a significant traffic safety hazard especially at night or next to high speed traffic [2, 3]. Without 
adequate information for actual parking space availability, the driver may infer that nearby parking 
facilities have no available spaces after observing trucks parked on exit ramps or shoulders—when in 
fact nearby parking is available [4].  Furthermore when law enforcement officers encounter trucks 
parked illegally under this scenario, they may feel obligated to wake up the drivers to move their 
vehicles, thus forcing them to continue driving (perhaps beyond the legal HOS limit) to again search for 
legal parking.  The added driving to search for available parking also wastes fuel and increases diesel 
emissions. 

Several national and state sponsored studies that have pointed to capacity shortages also support the 
contention that existing truck parking capacity along many regional corridors has not always been 
efficiently utilized; some facilities between adjacent road segments were under capacity while others 
are near, or over, capacity [5-9].  A driver’s perception of a shortage does not match consistently with 

                                                            

1 Code of Federal Regulations 49 part 395; see www.ecfr.gov for full provisions 

http://www.ecfr.gov/
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capacity utilization data in a given corridor.  For example, a study Michigan reported on one corridor 
where 80 percent of the parking facilities were over their capacity 2.4 nights per week, 40 percent of the 
drivers believed more spaces need to be added. Yet, along another corridor 40 percent of the parking 
facilities were over capacity 1.6 nights per week, 67 of the drivers surveyed believed that more spaces 
were needed.  Furthermore, increasing the number of truck stops and rest areas, or adding capacity to 
existing ones to alleviate parking shortages, may be either financially intractable, or incompatible with 
local restrictions [8, 10].  High occupancy levels at rest areas during night time hours have also been 
correlated with an increase in truck crash frequency on adjacent highway segments [11].  Intelligent 
Transportation System (ITS) technologies can be used to provide real-time information that would 
redirect drivers to nearby facilities with available parking, thereby utilizing the existing and future added 
capacity more effectively [6]. 

The Interstate 94 corridor within the state of Minnesota is a major national freight corridor that could 
benefit from providing parking information to truck drivers. Truck volumes average   between 10 to 15 
percent of all traffic along the corridor (averaged annual daily total traffic volumes between 20,000 and 
180,000), and many drivers must also contend with urban congestion during peak hours as they 
approach the Minneapolis-Saint Paul metropolitan area. This is another logistical constraint that can 
affect how drivers plan their trips and when to take required breaks.  Previous state-sponsored studies 
have shown frequent over capacity problems for the truck parking rest areas along the corridor, 
including the eastbound direction between the North Dakota boarder and the Twin Cities metropolitan 
area [7, 8, 12].  The problems experienced in the I-94 corridor in Minnesota are not unique to other 
aforementioned corridors, and therefore the development and testing of a comprehensive truck parking 
availability system is applicable to other corridors as well.  

1.1 PROJECT RESEARCH SCOPE AND OBJECTIVES 

The main objective of this proposal was to design and evaluate a comprehensive real-time truck parking 
availability system along the I-94 corridor passing through Minnesota. The parking detection system was 
to satisfy the following system implementation requirements: 

1. The system could not infiltrate or disturb pavement substructure and surfaces.  
2. The system could not interfere with parking facilities operations during the installation, 

maintenance, or its operation. 
3. The system would automate real-time parking space occupancy information “24/7”.  
4. The system would provide an architecture capable of aggregating, archiving, and broadcasting 

parking space information. 
5. Test system would provide truck parking information dissemination over three mechanisms: 1) 

fixed location roadside parking availability notifications, 2) commercial operator accessible web 
portal, and 3) commercial driver in-cab mechanisms. 

The team proposed a novel multiple camera sensor-based detection system to meet the 
aforementioned objectives.  System parking space information accuracy and performance were 
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quantified by comparing human ground-truth observations during continuous periods of operation as 
well as quantifying other reliability measures during the monitoring process and field operational tests.  

A system usability assessment was performed by designing survey tool to collect data from drivers and 
operators who utilize the I-94 corridor.  The before-installation and operation assessment was used as a 
guide for information dissemination and accuracy, while a second, follow-up evaluative survey was 
completed to gain feedback of the system in operation and validate pre-operations usability 
assessments. 

The project scope originally included developing and integrating the system at three public sponsored 
rest areas in addition to a private commercial truck stop along the I-94 eastbound direction of the 
corridor, west of Minneapolis/Saint Paul. During the course of the project, the original private facilities 
operator could not participate and a similar agreement by another alternative private operator could 
not be reached.  However, three state sponsored sites were implemented and extensively tested; they 
have been continually operational starting in early 2013. 

1.2 REPORT ORGANIZATION 

The report is organized as follows. Chapter 2 summarizes ITS approaches and technologies for 
estimating truck and vehicle parking availability published in literature. Chapter 3 provides an overview 
of the technological approach for truck parking detection. Chapter 4 then summarizes the results of a 
usability study using survey data collected from CMV drivers and operators who use the Interstate 94 
corridor (within the Midwest region) prior to system deployments and field operational testing.  Chapter 
5 describes the truck parking facilities and supporting architecture to provide real-time truck parking 
information dissemination and system monitoring. Truck parking detection performance (accuracy and 
around-the-clock reliability) is provided in chapter 6. Chapter 7 summarizes a full operational field test 
and a subsequent user evaluation study conducted by the ATRI team members.  Conclusions and future 
recommendations are provided in chapter 8.   
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CHAPTER 2:  BACKGROUND 

Intelligent parking systems has been an active area of research and development for several years. This 
chapter provides a broad overview of parking detection technologies and the existing challenges which 
such technologies must address.   

Real-time parking monitoring methodologies can be categorized as indirect and direct. Indirect 
methodologies are based on detecting and classifying vehicles at all ingress and egress points of the 
parking facility and summing the difference over accumulated counts at specified time intervals [4, 13, 
14]. Fallon & Howard [15] developed a system based on embedding small battery powered 
magnetometers (75mm x 140mm) in the pavement at the egress and ingress locations of the parking 
facility to estimate occupancy by subtracting the two counts in real-time. Manually observed vehicle 
counts over a 30 day period found that there was a small non-stationary bias in the detector over time 
which resulted in a false detection rate averaging about one vehicle per day. The magnetometers 
operate with a similar principle to in-pavement loop detectors but with reportedly much less disruption 
to pavement surfaces. As the test facilities had between 27 and 35 spaces, the accumulated error 
produced unacceptably high occupancy estimations within just two weeks of operation.  

Another indirect approach suggested by Gertler & James [13] utilized available commercial off-the-shelf 
computer vision camera sensors at the entrance and exit of a 30 space private parking facility.  The 
camera sensors utilized "trip-wire" presence detectors in order to sense vehicle presence and motion, 
and classify vehicle type based on estimating their length.  The reported detection accuracy analyzed 
from 1044 outbound, and 841 inbound vehicles, observed during 3 mid-day periods and one night 
period, was 86 percent to 96 percent during the day, and 27 percent to 55.3 percent at night.  The 
authors reported that poor lighting at night, different intensity/color profiles of the tractor and trailer, 
shadows, birds flying in front of the camera sensors, and nearby vehicle headlights, were the cause of 
the false detections.  A recent effort sponsored by the Federal Motor Carrier Safety Administration 
demonstrated a system integrating either road-side or overhead laser scanners with a Doppler radar 
sensor detection system.  Their study also focused on assessing vehicle classification accuracy, because 
it would improve the estimate the actual number of parking spaces used due to different vehicle lengths 
entering and exiting the facility.  There are many challenging real-world scenarios that were identified 
that can confound this type of approach– for example, a bob-tail exits without its semi-trailer (trailer 
drop), or two small vehicles ‘double-up’ in one space.  Vehicle class identification error out of 6 classes 
was within 5 percent, with entrance count errors typically 0.1 percent.  Vehicle parking count errors 
drifted between 3 (93.1 percent) to 11 counts (75 percent) accurate, over the course of three days 
without re-zeroing.  [14].  Note that the test facilities had a capacity of 44 parking stalls.  To conclude, 
although the latter approaches based on ingress-egress count detection are intuitively obvious, the 
general problem is that small counting and vehicle classification errors accumulated over time can lead 
to unacceptably large errors in the parking space occupancy estimates.  

Direct methods, on the other hand, will not be subject to any accumulation error over time and 
therefore in theory should provide more reliable information without any manual intervention to 
correct errors.  Furthermore, 'trip-wire' counting cannot determine actual occupancy for undisciplined 
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parking which occurs when drivers do not respect parking lane line designations, differ in their 
maneuvering skills, or where lanes are not delineated [13]. Instead of utilizing the aforementioned in-
pavement magnetometer sensors as a ‘trip-wire’, Fallon and Howard [15] created a detection 'grid' 
within the parking facility.  In each parking stall two pucks were embedded within the pavement surface 
longitudinally 6.1m apart with the objective to sense different length vehicles.  The detection signals 
were transmitted wirelessly to nearby receiving stations.  The approach did not prove to be successful 
because aberrant driving and parking behaviors confounded the occupancy detection.  For example, 
they were not able to reconcile incorrect detections when drivers did not respect the actual space 
delineations when parking or maneuvering their vehicles, or after semi-trailer drops.  A recent study in 
Florida by [16] deployed a multiplicity of commercial wireless in-pavement ‘puck’ sensors each 
containing a magnetometer plus a skyward pointing IR beam to improve presence detection reliability.  
Two 13 stall state sponsored truck rest areas were instrumented, by embedding three such sensors 
longitudinally per stall. They then used the system to evaluate a truck parking forecasting algorithm 
based on a scalar Kalman Filter, updated every eight hours, to predict hourly occupancy levels typically 
to within ±3 counts of the sensor detection occupancy measurement.  

Direct parking space occupancy detection based on using camera 2D image sensors has received 
considerable due to their ease of maintenance and surveillance capabilities.  Modi et al. [17] 
demonstrated a computer vision-based approach to directly detect space occupancy of vehicles utilizing 
a foreground/background blob segmentation algorithm based on time-variant mixture of Gaussians 
combined with shadow removal.  Wu et al. [18] ortho-rectified a 2D camera view of vehicle parking 
spaces into a top-down viewpoint before segmenting each parking space.  A sliding window of 3 parking 
spaces, moved one space at a time, encoded the detection result based on calculating probabilities of 
occupancy using mean color of the space compared to a color feature prior of the empty space.  A 
Markov Random Field model was then used to impose a penalty cost to disambiguate overlapping 
probabilities that lead to conflicting conclusions of occupancy. They reported an accuracy range from 76 
percent to 94 percent. True [19] computed a color (in YCbCr space) histograms of parking space regions 
defined a priori. The luminance component is discarded to mitigate intensity changes in the scene. The 
histograms are compared with a training set of histograms to classify the space as occupied or empty 
with classification accuracy between 68 percent and 94 percent. Seo and Urmson [20] utilized fly-over 
aerial images to train an SVM linear classifier.  A classification accuracy of 91.5 percent was achieved in 
one non-training Google aerial photo.  They noted, even for aerial imagery, it was important to train 
with cases where occlusions were evident.  Bong et al. [21] used color subtraction from an a-priori 
vacant background image to obtain large difference binary blobs which were ANDed with Sobel edge 
detection of the difference image. Shadow removal was obtained by discriminating the density of edges 
in a shadow vs. a vehicle.  The system was tested under various lighting and weather conditions with 
accuracies no worse than 93.8 percent for eight private vehicle parking spots across 191 samples, but 
the system cannot tolerate occlusions. Deng et al. [22], designed a Bayesian discriminator from Principal 
Component Analysis (PCA) using Canny edge density, variance of intensity, and pixel correlation with a 
background image, for one private vehicle parking space.  1,687 camera images collected over 14 days 
were analyzed with a detection rate of 99 percent.  Occlusions from adjacent vehicles and multiple 
parking space detection were not addressed with this approach. 
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Researchers in [23] computed Harr-like features within 24x24 pixel patches to discriminate between 
empty, and occupied spaces (from background empty spot model). Thirty samples were analyzed for a 
region of interest encompassing four parking spaces, with classification accuracy between 100 percent 
and 90 percent.  There were more false positives as the number of vehicles occupying the parking 
spaces increased.  Very recently, researchers developed a multi-camera system to monitor on-street car 
parking. Observed ‘Vacant’ vs. ‘Occupied’ parking space training data were constructed to train an SVM 
(Support Vector Machine) for parking status classification. Feature vectors were derived from Histogram 
of Orient Gradient cells lying within a user-defined region of interest (ROI) that defined a boundary 
around parking spaces. They reported a detection accuracy between 91.9 percent and 94.8 percent 
across 5 days of recorded video [24]. A limitation to the approach was that it required a very large 
training set of scenes representing occupied and vacant parking scenarios under all possible lighting, 
weather, and parking conditions.  Training sets had to be generated that was specific to a given camera 
viewpoint of the spaces. 

In all the aforementioned 2D computer vision methods, rapid changes in background illumination, glare, 
shadows, and partial occlusion from overlapping vehicles present numerous challenges.  The methods 
were evaluated primarily with private vehicles, where such challenges become even more notable with 
tractor-trailer trucks because of their larger size and height compared to private vehicles.  A multi-
camera view approach was developed by the team to specifically address these challenges.  
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CHAPTER 3:  TRUCK SPACE PARKING DETECTION 

The advantage of the multi-view approach is that it affords the ability to reconstruct the scene observed 
by the cameras in three dimensions (Figure 3.2). In this approach, Structure from Motion (SfM) 
techniques are used to build a 3D representation of the scene [25, 26]. The advantage of obtaining the 
3D structure of scenes with multi-view stereo reconstruction techniques over aforementioned 2D image 
processing techniques is that the multiplicity of views are used to perform photo redundancy checks to 
filter out artifacts arising from signal noise, camera optics, and object motions that displace differently 
between the images, thereby improving the robustness and accuracy of the reconstructed 3D features 
[25]. Results of such an approach reported in the literature are impressive; ‘photorealistic’ highly 
detailed accurate 3D geometric surface and point representations of complex urban cityscapes and 
objects were demonstrated.  Robust segmentation of overlapping, complex objects, under varied 
lighting can be achieved that typically confound 2D techniques from a single camera [26]. The SfM-
based vehicle detection algorithm first integrates an implementation of the Bundler from [27, 28] to 
solve for unknown camera intrinsic and extrinsic parameters, with the Patched-based Multi-View Stereo 
3D dense point reconstruction technique (PMVS) [25]. The theory for the truck parking occupancy 
detection algorithm is described below, with a cursory overview of the SfM-3D reconstruction process 
(Figure 3.1). 
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Figure 3.1. Algorithm steps for truck parking space occupancy detection. 
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Figure 3.2. Truck 3D occupancy vehicle detection for a group of parking spaces. 

 

3.1 3D VEHICLE OBJECT RECONSTRUCTION 

After acquisition of multiple images, the first step builds a set of putative matching image point 
coordinates, 𝒙𝒙𝑖𝑖,𝑗𝑗across  𝑗𝑗 = 1 …𝑚𝑚 separate camera views using SIFT features [29, 30]. Concretely, the 
assumption is given that the transformation from the unknown 3D (4x1) homogeneous world coordinate 
Xi to the corresponding (3x1) homogeneous image point  𝒙𝒙𝑖𝑖,𝑗𝑗   can be described by the common 
perspective transform representation: 

 𝜆𝜆 ⋅ 𝒙𝒙𝑖𝑖,𝑗𝑗 =  [𝑲𝑲][𝑹𝑹 | 𝒕𝒕 ] 𝑿𝑿𝒊𝒊 (3.1) 

where the K is the (3x3) intrinsic camera parameter matrix, which projects the 3D coordinate onto the 
image plane, and the upper (3x3) direction cosine matrix R, and the upper (3x1) vector t compose the 
(3x4) extrinsic matrix, which transposes the world coordinate Xi into the camera frame.  The coefficient 
 𝜆𝜆 represents an arbitrary scale factor.  The Bundler efficiently seeks to minimize the following cost 
objective function, C, across all camera pairs and given image points, as presented in [31]: 

𝑚𝑚 𝑛𝑛
2

 𝐶𝐶 =  ���𝑄𝑄(𝒂𝒂𝒋𝒋,𝒃𝒃𝒊𝒊) −  𝒙𝒙𝑖𝑖,𝑗𝑗�  (3.2) 
𝑗𝑗=1 𝑖𝑖=1
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where ‖∙‖2 is the L2 norm distance between the estimated image point, 𝒙𝒙�𝑖𝑖,𝑗𝑗 = 𝑄𝑄(𝒂𝒂𝒋𝒋,𝒃𝒃𝒊𝒊) , and a 
corresponding actual image point  𝒙𝒙𝑖𝑖,𝑗𝑗 in (3.11).  The parameter vector 𝒂𝒂𝒋𝒋 represents each of the 12 
extrinsic parameters on the right-hand side of (3.11), and the parameter vector 𝒃𝒃𝒊𝒊 the scaling 
parameters on the left hand side of (3.11).  

Computing the derivative of the above cost function and rearrangement of Jacobian derivative matrix 
terms, results in a sparse block matrix which is then solved very efficiently using gradient based 
optimization methods.  It should be apparent that (3.1) and (3.2) can be generalized to any number of 
camera views, without the requirement that each image coordinate should match in all m camera views.  
Also, one can implement different image point scaling models for the original image points on the left 
hand side of (3.1) to compensate for systematic image projection errors; the Bundler utilized a 4th order 
radial lens scale distortion correction model. RANSAC is used to remove outlier putative matches 𝒙𝒙𝑖𝑖,𝑗𝑗  as 
determined by the computed L2 norm difference between 𝒙𝒙�𝑖𝑖,𝑗𝑗 and 𝒙𝒙𝑖𝑖,𝑗𝑗 after each iterative minimization 
step of the cost objective function.  After each solution, additional optimizations are performed with a 
RANSAC procedure to remove image re-projection outliers to further refine the parameter estimation.  
Note that before the aforementioned iterative adjustment procedure is carried out, the initial putative 
SIFT point matches between successive camera pairs are refined with initial camera poses and focal 
length estimates by a separate iterative procedure based on homography constraint violations.  The 
aforementioned steps are done to reduce the chances of finding a local poor local minimum [27].  For 
the deployed truck parking system, an initial focal length estimate based on the manufacturer 
specifications for each PTZ camera is input into the Bundler. 

The bundled camera transform and intrinsic solutions also contain a sparse set of 3D coordinate point 
correspondences for the complete scene [27, 28]. However the sparse structure of points were 
insufficient for discriminating vehicles and subsequent space occupancy detection. Semi-dense 3D 
reconstruction is then achieved with Patch-based Multi-view Stereo reconstruction (PMVS) [25, 26]. The 
essence of PMVS, which uses the estimated intrinsic and extrinsic parameters for each camera, is that a 
localized surface patch model is used to perform putative matches of associated image points falling on 
the epipolar lines between each set of camera pairs (in this case, 3 cameras are used and therefore 
there are n·(n  - 1)/2 = 3 such pairs). A small image patch is projected onto a square surface patch which 
is then rotated (pitch and yaw) with respect to the camera image planes. The reconstruction algorithm 
performs an iterative process of matching, expanding, and filtering. The matching process consists of 
matching patches, 𝑝𝑝 𝑖𝑖𝑖𝑖 ℝ2 along epipolar lines using normalized cross-correlation based on either Harris 
corner point or Difference of Gaussian features starting at the closest point candidate to the image 
plane (a patch size of 5x5 pixels provided the best results for this system). In each putative match, an 
initial 3D center position for each patch, 𝒄𝒄(𝑝𝑝) 𝑖𝑖𝑖𝑖 ℝ3 and its surface normal 𝒏𝒏(𝑝𝑝) 𝑖𝑖𝑖𝑖 ℝ3 are used to 
compute a normalized cross-correlation score. 𝒄𝒄(𝑝𝑝) and 𝒏𝒏(𝑝𝑝) are obtained by iteratively rotating the 
surface patch until the highest normalized cross-correlation score is obtained between the projected 
image pixels on the patch. The correlation score and location surface patch data are associated with 2x2 
pixel cells containing the image coordinates.  The expansion step consists of marching through 
remaining empty cells with a similar process; the filtering step performs photo-consistency checks, using 
the surface patch parameters and depth information to resolve surface discontinuities; for example, a 
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person or part of a vehicle enters one camera view but is not present in the others, or water droplets 
form on the protective lens cover of the enclosure during snow or rain precipitation, or sunlight glare 
interferes with the image, and so on, all of which will similarly affect photo-consistency between each of 
the camera views. The above 3 steps are repeated until all the cells have been tested amongst the 
camera pairs.  A more complete discussion of the algorithm is described in [25, 26]. 

3.2 3D SCENE REGISTRATION AND ALIGNMENT  

The aforementioned optimization procedure for intrinsic and extrinsic multi-camera parameters are 
expressed in an arbitrary scale and world coordinate system and will be affected by the initial putative 
matches between the feature points contained within the captured image sets.  Thus in order to align 
the 3D point cloud representation of the parking facilities scene, a similarity transformation must be 
determined to transform the point cloud into a desired metric coordinate frame.  Snavely et al. [27] 
created interactive tools that allowed the user to ‘fit’ a similarity transformation, composed of a rigid 
body 3D transformation and a uniform scale factor, to a scene or 2D map.  An example of an automated 
approach to transform one 3D point cloud into another was demonstrated in [32] by creating, and then 
matching, viewpoint invariant image texture patches oriented along the estimated surface normal of 
each XYZ point within the 3D point clouds (the projected patch features were described by SIFT 
descriptors).  Such approaches are not suitable for the parking detection system because both the scene 
foreground and background change throughout time.  A procedure to automate the estimation a 
similarity transformation to align the SfM 3D data with the parking lot surface was therefore developed, 
and is described below.  

First the end points and mid-points of each parking space lane line, 𝑳𝑳𝒊𝒊, 𝑖𝑖 = 1 …𝑚𝑚, were surveyed using a 
dual channel Trimble MS750 DGPS survey instrument that obtained the RTK corrections from the 
MNCORS Virtual Reference Station network over a cellular internet connection.  The relative distance 
between survey points, and deviation from a fitted flat plane, were both within approximately 4 inches 
(10cm) at two standard deviations (NAD83 Minnesota State Plane). For each overlapping image set 
𝑰𝑰𝒏𝒏,𝑖𝑖 = 1 … 3 camera views acquired at sample time 𝑠𝑠, where by the extrinsic and intrinsic parameters 
for each camera are obtained by the Bundler described in section 3.1 . A set of image points 
𝒑𝒑𝒊𝒊,𝒏𝒏 corresponding to 𝑖𝑖 = 1 … 𝑐𝑐, 𝑐𝑐 < 𝑚𝑚 survey points  𝑳𝑳𝒊𝒊, 𝑖𝑖 = 1 … 𝑐𝑐 that can be projected into all 𝑖𝑖 
camera views. The intrinsic and extrinsic parameters are used to back project the undistorted 2D image 
point 𝒑𝒑′𝒊𝒊,𝒏𝒏 into its equivalent world coordinate 𝑳𝑳�𝒊𝒊, using each camera pair (𝑗𝑗, 𝑘𝑘). With three cameras, 
there will then be  3 × (3 − 1) ÷ 2 = 3 back projection solutions for 𝑳𝑳�𝒊𝒊 with  𝑗𝑗, 𝑘𝑘 =  �{1,2}, {2,3}, {1,3} �. 
For each solution, a back projection error vector, 𝝐𝝐𝒊𝒊,(𝒌𝒌,𝒋𝒋) , is computed as the difference vector 
orthogonal to the two closest 3D points, 𝜶𝜶𝒋𝒋,𝜷𝜷𝒌𝒌 lying on each of two normal direction rays, 𝒖𝒖 ′

𝒋𝒋 =  𝒑𝒑𝒊𝒊,𝒋𝒋⁄𝑓𝑓𝑗𝑗 
, 𝒖𝒖𝒌𝒌 =  𝒑𝒑′𝒊𝒊,𝒌𝒌⁄𝑓𝑓𝑘𝑘 emanating from the camera pair (𝑗𝑗, 𝑘𝑘) focal centers, 𝒄𝒄𝒋𝒋, 𝒄𝒄𝒌𝒌.  This relationship is 
mathematically described as: 

  𝝐𝝐𝒊𝒊,(𝒌𝒌,𝒋𝒋) =  𝜶𝜶𝒋𝒋 −  𝜷𝜷𝒌𝒌 (3.3) 



                     �𝑳𝑳𝒊𝒊 =  𝝐𝝐𝒊𝒊,(𝒌𝒌,𝒋𝒋) ⁄2 + 𝜶𝜶𝒋𝒋 (3.4) 

 where    𝜶𝜶𝒋𝒋 =  𝒄𝒄𝒋𝒋 +  𝑎𝑎𝑗𝑗 ∙ �𝒖𝒖𝒋𝒋 −  𝒄𝒄𝒋𝒋�⁄𝑑𝑑 (3.5) 

                𝜷𝜷𝒌𝒌 = 𝒄𝒄𝒌𝒌 +  𝑎𝑎𝑘𝑘 ∙ (𝒖𝒖𝒌𝒌 − 𝒄𝒄𝒌𝒌)⁄𝑑𝑑   (3.6) 

   

The scalars 𝑎𝑎𝑗𝑗 ,𝑎𝑎𝑘𝑘, and 𝑑𝑑 computed by: 

𝑎𝑎𝑗𝑗 =  (𝒖𝒖𝒌𝒌 − 𝒄𝒄𝒌𝒌) × �𝒄𝒄𝒋𝒋 − 𝒄𝒄𝒌𝒌� ∘ �𝒖𝒖𝒋𝒋 − 𝒄𝒄𝒋𝒋� × (𝒖𝒖𝒌𝒌 − 𝒄𝒄𝒌𝒌) 

𝑎𝑎𝑘𝑘 =  �𝒖𝒖𝒋𝒋 − 𝒄𝒄𝒋𝒋� × �𝒄𝒄𝒋𝒋 − 𝒄𝒄𝒌𝒌� ∘ �𝒖𝒖𝒋𝒋 − 𝒄𝒄𝒋𝒋� × (𝒖𝒖𝒌𝒌 − 𝒄𝒄𝒌𝒌) 

𝑑𝑑 =  �𝒄𝒄𝒋𝒋 − 𝒄𝒄𝒌𝒌� × (𝒖𝒖𝒌𝒌 − 𝒄𝒄𝒌𝒌) ∘ �𝒖𝒖𝒋𝒋 − 𝒄𝒄𝒋𝒋� × (𝒖𝒖𝒌𝒌 − 𝒄𝒄𝒌𝒌) 

Three estimates of 𝑳𝑳�𝒊𝒊 are computed and retained: 1) the mean value between all camera pairs, 2) the 
minimum error 𝝐𝝐𝒊𝒊,(𝒌𝒌,𝒋𝒋)  estimate of 𝑳𝑳�𝒊𝒊, and 3) the estimate associated with the largest projection angle 
between 𝒖𝒖𝒋𝒋 and 𝒖𝒖𝒌𝒌.  For each set of estimates, a least-squares fit of the parking lot plane is computed, 
with outlier removal.  The remaining set of 𝑟𝑟 back projected coordinates in the acquired time sample 𝑠𝑠 
are then used to estimate the initial similarity transformation composed of a uniform scale, 𝑆𝑆𝑠𝑠, a rigid 
body rotation matrix, 𝑹𝑹𝒔𝒔, and translation vector, 𝒕𝒕𝒔𝒔. Such an estimate follows from the procedure in [33] 
by first normalizing each 𝑳𝑳�𝒊𝒊, and 𝑳𝑳𝒊𝒊 relative to their respective point centroids, thereby providing an 
estimate �̂�𝑆𝑠𝑠 for the uniform scale factor e.g.: 

�𝑳𝑳� − 𝝆𝝆� �
 �̂�𝒍 = 𝒔𝒔,𝒊𝒊 𝒔𝒔

𝒔𝒔,𝒊𝒊   (3.7) 
�𝑳𝑳�𝒔𝒔,𝒊𝒊 − 𝝆𝝆�𝒔𝒔�

   

(𝑳𝑳
 𝒍𝒍𝒊𝒊 =  𝒊𝒊 − 𝝆𝝆)

 (3.8) 
‖𝑳𝑳𝒊𝒊 − 𝝆𝝆‖

   

‖𝑳𝑳𝒊𝒊 − 𝝆𝝆‖
 �̂�𝑆𝑠𝑠 =   (3.9) 

�𝑳𝑳�𝒔𝒔,𝒊𝒊 − 𝝆𝝆�𝒔𝒔�

12 
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where 

𝒓𝒓 𝒓𝒓
1 1

 𝝆𝝆�𝒔𝒔 =  ∙�𝑳𝑳�𝒔𝒔,𝒊𝒊 ,        𝝆𝝆 = ∙�𝑳𝑳
𝑟𝑟 𝑟𝑟 𝒊𝒊 (3.10) 

𝒊𝒊=𝟏𝟏 𝒊𝒊=𝟏𝟏

The uniform scalar follows from the normalized representations in (3.7) and (3.8), can be expressed as 
quaternion vectors, with the real component, 𝑞𝑞0 set to zero.  The unknown rotation, 𝑹𝑹𝒔𝒔, to transform  
each normalized back projected 3D coordinate �̂�𝒍𝒔𝒔,𝒊𝒊 into the reference coordinate 𝒍𝒍𝒊𝒊 can also be expressed 
as a quaternion, 𝒒𝒒�𝑹𝑹𝒔𝒔  through Euler’s formula, which then can be estimated with least squares by 

constraining �𝒒𝒒�𝑹𝑹𝒔𝒔� = 1, and row-wise augmentation of all �̂�𝒍𝒔𝒔,𝒊𝒊, and 𝒍𝒍𝒊𝒊  [34] of the following quaternion 
equation: 

 𝒒𝒒�𝒍𝒍,𝒔𝒔 × 𝒒𝒒�𝑹𝑹𝒔𝒔 − 𝒒𝒒�𝑹𝑹𝒔𝒔 × 𝒒𝒒𝒍𝒍 =  0 (3.11) 

The estimate of the 3D translation is computed directly from equations (3.7) through (3.9): 

 𝑡𝑡𝑠𝑠 =  𝝆𝝆 − 𝝆𝝆�𝒔𝒔 ∙ �̂�𝑆𝑠𝑠 (3.12) 

Recall that from the time sample 𝑠𝑠 three separate sets of the remaining 𝑟𝑟 matched points �𝑳𝑳�𝒔𝒔,𝒊𝒊, 𝑳𝑳𝒊𝒊�, 𝑖𝑖 =
1 … 𝑟𝑟, are used to compute their representative rotation, translation and uniform scale parameters 
defined respectively in (3.11), (3.12), and (3.9).  A final representative set of back projected coordinates, 
{𝑳𝑳�′𝒊𝒊,𝒔𝒔} is selected based on the aforementioned similarity transformation parameters which produce the 
smallest RMS error from  𝑳𝑳𝒊𝒊. 

Typically, with uniform scale corrections an RMS error of about two feet (0.5 meters) along any axis was 
observed which resulted in significant detection errors.  A second alignment refinement step was 
therefore developed to correct for non-linear scale effects in the real-world 3D space.  A first order 
correction in the horizontal x,y plane is estimated using the matching set 𝑳𝑳�′𝒊𝒊,𝒔𝒔  and 𝑳𝑳𝒊𝒊, while a second 
order correction model to correct elevation, ∆𝑍𝑍 , was estimated using the dense transformed 3D PMVS 
reconstruction data: 

 ∆𝑋𝑋 = 𝑎𝑎0 + 𝑎𝑎1 ∙ 𝑔𝑔𝑥𝑥 + 𝑎𝑎2 ∙ 𝑔𝑔𝑦𝑦 (3.13) 

 ∆𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1 ∙ 𝑔𝑔𝑥𝑥 + 𝑏𝑏2 ∙ 𝑔𝑔𝑦𝑦 (3.14) 

 ∆𝑍𝑍 = 𝑐𝑐 2 2
0 + 𝑐𝑐1 ∙ 𝑔𝑔𝑥𝑥 + 𝑐𝑐2 ∙ 𝑔𝑔𝑦𝑦 + 𝑐𝑐3 ∙ 𝑔𝑔𝑥𝑥 ∙ 𝑔𝑔𝑦𝑦 + 𝑐𝑐4 ∙ 𝑔𝑔𝑥𝑥 + 𝑐𝑐5 ∙ 𝑔𝑔𝑦𝑦 (3.15) 

̂
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Note 𝑔𝑔() in (3.13) through (3.15) refer to the x,y,z components of the transformed quasi-dense PMVS 
reconstruction points, 𝒈𝒈′𝒊𝒊. 

The elevation correction procedure searches for good candidate dense points that are representative of 
the parking lot surface using the following 2-step filtering method.  First, an elevation boundary is placed 
above, and below, the plane based on the aforementioned RMS error along the vertical axis relative to 
the reference survey points, 𝑳𝑳𝒊𝒊.  The second step filters the remaining dense reconstruction points by 
applying a threshold of the directional difference of the computed PMVS patch surface normal from the 
estimated parking lot surface normal. A threshold value of |20°| was determined experimentally.  This 
procedure reduced the RMS error between 𝑳𝑳�′𝒊𝒊,𝒔𝒔 and 𝑳𝑳𝒊𝒊 to within one foot (0.3m) under most cases 
(Figure 3.3), which has provided sufficient alignment thus far for robust parking occupancy classification. 

3.3 OCCUPANCY CLASSIFICATION 

A classifier was then designed based on estimating the above-plane 3D point probabilities within each 
parking space with respect to the total number of reconstructed 3D points.  The estimate is computed 
by segmenting and summing the above-plane points which lie within a 6-sided convex 3D polyhedron, 
defined by intersecting 4 vertical planes aligned with the vertical elevation Z-axis and coincident with 
the parking lanes and their front/back end points, and a horizontal plane elevated 16.4 ft. (5 meters) 
above the surface which is greater than the USDOT FHWA regulation height of 13.5 ft. (4.1m). Based on 
empirical observations, an above-surface threshold of 0.3 meters has been used to segment vehicle 
objects from the parking lot plane (Figure 3.3). The 3D point probabilities can then be used be used to 
determine an optimal decision boundary for occupancy to minimize type I (False Positives) and type II 
(False Negatives) errors.  The decision boundary selection procedure is further described in chapter 
CHAPTER 6: . 

     

a. 
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b. 

 

c. 

Figure 3.3. Elevation re-alignment of extracted 3D parking lot planar points; 

a) night-time camera view of 6 parking spaces; b)  Distribution of Z-elevation component of extracted parking 
lot surface points before alignment model in (3.13) through (3.15); c)  Z-elevation distribution after alignment 

model correction. 
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CHAPTER 4:  PRE-IMPLEMENTATION USABILITY STUDY

As part of the Minnesota truck parking availability system (TPAS), a survey was designed 
carriers and commercial drivers to examine the specific needs and preferences for disse
time parking space availability information to truck drivers.  The objectives of the survey 
characterize the general nature and driving behavior of the freight borne trips along the 

 

for motor 
minating real-
were to: 1) 
corridor, as well 

as driver demographics, 2) understand perceptions concerning truck parking availability, 3) determine 
preferences for information dissemination and the level accuracy, and 4) determine the perceived value 
of such parking information along the corridor.  The information was used to guide engineering 
performance and operational testing decisions for TPAS (chapters CHAPTER 6:  and CHAPTER 7: ). 

4.1 PRE-IMPLEMENTATION USABILITY SURVEY METHODOLOGY 

ATRI team members developed an online survey instrument to obtain driver and carrier needs and 
preferences for TPAS.  The survey request information related to truck parking availability notification 
mechanisms and format, as well as system capabilities and reliability. The survey was relatively brief in 
length (18 questions for drivers and 15 for carriers) and primarily consisted of multiple choice (close-
ended) questions.  This format was chosen to maximize participation by requiring minimal time to 
complete, and to limit potential data quality issues associated with open-ended responses. Survey 
questions were also tailored to the two specific target groups based on the response provided to the 
first question (i.e. drivers received one set of questions while carriers received a slightly modified set of 
questions). 

Prior to distribution, the survey was reviewed by several industry stakeholders, as well as the TPAS and 
Michigan Truck Parking management research teams, and several questions were modified based on the 
evaluator’s recommendations2.  ATRI promoted the survey through several media outlets, including 
industry news alerts and coverage through major industry news organizations. To augment the data 
collection efforts, ATRI also worked with the state truck associations located along the I-94 corridor 
(Michigan, Indiana, Illinois, Wisconsin, Minnesota, and North and South Dakota) to distribute additional 
announcements to their memberships. 

The survey was distributed online for one month from September 17th to October 24th 2012 and a total 
of 465 surveys were completed. All responses were then reviewed by the research team and 130 
surveys were ultimately removed from the database due to incompleteness, duplication or other 
abnormalities, resulting in a cleansed dataset of 335 surveys. Of these surveys, 242 (72.2 percent) of the 
respondents identified themselves as drivers while 93 (27.8 percent) reported that they worked in other 

                                                            

2 The Michigan Department of Transportation was also studying and developing a truck parking information system 
along the I-94 corridor within that state, through the FHWA at the time of the survey study. 
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occupations in the trucking industry (such as dispatchers, or operations, business/accounting, or as a 
senior executives).  A copy of the full survey is listed in Appendix A. 

4.2 PRE-IMPLEMENTATION USABILITY ANALYSIS 

In short, the survey analyses suggest that there was a perceived lack of safe, legal available parking from 
both the carriers and drivers.  Furthermore, majority of those surveyed (86.6 percent of carriers, and 
89.2 percent of drivers) indicated that the parking information must be at least 85 percent reliable for it 
to be useful to their operations.  By and large, attitudes and perceptions on truck parking availability and 
information were consistent between the carriers and drivers.  The relevant findings are discussed 
below. 

4.2.1 Driver and Carrier Demographics 

Of the drivers surveyed, the respondents were primarily male (85.8 percent) and approximately two 
thirds (67.1 percent) were employee/company drivers while one third (32.9 percent) were owner-
operators. The majority (69.5 percent) of the drivers surveyed were between the ages of 45 and 64, 
followed by 25 to 44 years old (27.2 percent), younger than 25 (2.1 percent) and older than 65 years (1.3 
percent).  

The majority of the surveyed drivers operated in the for-hire truckload (TL) sector (70.6 percent), 
followed by private fleets (15.1 percent).  The remaining drivers (between 1.7 and 3.8 percent) operated 
for other businesses such Less-than-truckload, tanker, flatbed hauling, express/parcel service.  Nearly 
three quarters (73.6 percent) of the driver respondents reported working for a motor carrier operating 
more than 50 trucks.  While the majority of carriers at the national level operate fleets of 20 or fewer 
power units, medium to large carriers are responsible for the majority of truck registrations and driver 
employment; the driver sample population from the survey were therefore indicative of the national 
fleet trends.  

Respondents who identified themselves as motor carriers (i.e. non-drivers) a majority of respondents 
identified themselves as working in safety-related occupations (36.8 percent), followed by dispatching 
(26.4 percent), operations (21.8 percent), senior-level positions (13.8 percent) and business/accounting 
(1.1 percent). Similar to the distribution of driver respondents, the majority of carriers operated in the 
for-hire Truck Load sector (66.7 percent), followed by private fleets (10.3 percent).  

4.2.2 General Travel Characteristics 

None of the driver respondents reported being a local delivery driver, while nearly three quarters (74.2 
percent) were long haul drivers (500+ miles per trip) and 28.5 percent were regional drivers (100-499 
miles per trip).  Regarding the usage of the corridor, approximately half (55.4 percent) of the drivers 
indicated that between 1 and 25 percent of their loads require travel on I-94 while another 18.8 percent 
reported that they utilize the corridor for between 26 and 100 percent of their loads (Figure 3).  One 
quarter (25.8 percent) of the drivers indicated that they did not use the I-94 corridor for commercial 
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trips.  Therefore, a significant number of freight borne trips utilize the corridor, with most requiring 
significant travel time. 

 

4.2.3 Truck Parking Issues and Concerns 

Lead times for the trips tend to be small (under 24 hours); however there is some discrepancy reported 
between drivers and carrier personnel with the operational or management functions.  Over two thirds 
(69.9 percent) of the drivers surveyed typically receive less than 24-hours of notice prior to a long-
distance trip followed by a 1 to 4 day notice at 28.5 percent (Figure 4). Therefore, nearly all driver 
respondents (98.4 percent) indicated they receive four days or less advance notice of freight delivery 
information.  On the other hand, carriers reported giving drivers slightly more notice of long-distance 
trips compared to the driver respondents. Over half (53.6 percent) of the carrier respondents reported 
that drivers receive less than 24-hours of notice, followed by 1 to 4 days (40.5 percent), 5 to 9 days (3.6 
percent), or more than 10 days (2.4 percent). 

Lastly, employee drivers reported less notification time for long trips than owner-operators. In 
particular, a larger number of owner-operators (44.9 percent) report receiving more than one day 
advance notice compared to employee drivers (22.9 percent).  A majority of both types of drivers still 
receives less than 24 hours of notice (55.1 percent of owner-operators and 77.0 percent of employee 
drivers). The remaining 1.2 percent of employee drivers and 2.6 percent of owner-operators receiving 
five, or more days, advance notification. 

Drivers rank-ordered a list of five truck parking issues on a scale ranging from “never experience” to 
“always experience (Figure 4.1).”  The two most frequently experienced parking issues were “parking 
only available in unsafe locations” along with “parking available on ramps or shoulders.” 43.1 percent of 
drivers “always” or “often” experienced parking available in unsafe locations, while 44.7 percent 
reported “always” or “often” finding parking locations only on ramps or shoulders. As for the remaining 
parking issues, rest time area limits were “always” or “often” experienced by only 28.9 percent of 
drivers. Truck vandalism and cargo theft were the least common occurrences, with 79.0 percent of 
drivers reporting that they “rarely” or “never” experienced vandalism and 87.7 percent of drivers 
indicated they “rarely” or “never” encountered cargo theft. 
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Figure 4.1. Driver distribution by rate of experiencing parking issues. 

Similar to driver responses (Figure 4.2) carriers reported that the issue most often experienced by their 
drivers was truck parking availability only on ramps or shoulders (82.3 percent occasionally, often or 
always), followed by rest area time limits (79.3 percent) and truck parking availability limited to unsafe 
locations (78.3 percent).  

 

Figure 4.2. Carrier distribution by rate of experiencing parking issues. 

Drivers were next asked to rank a predetermined list of reasons for seeking truck parking on a scale of 1 
to 10 with “1” being the most important reason.  Of these, hours-of-service (HOS) mandated rest was 
rated most important by the driver respondents by a wide margin, receiving an average ranking of 1.8.  
As Table 4.1 indicates, the second-most important reason was showering/restroom (4.4), followed by 
restaurant/eating (5.0), awaiting dispatch (5.9), staging/waiting for loads (6.1), weather-related (6.2), 
safety checks/load securement (6.4), mechanical issues/failures (6.4), avoiding congesting (6.8), 
obtaining directions (7.6) and personal communications (7.8).  The same general trends were also 
evident when carriers were similarly asked to rank truck parking reasons (Table 4.2). 
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Table 4.1.  Driver Distribution by Average Rankings of Reasons for Seeking 
Truck Parking 

Reason for Seeking Truck Parking  Average Ranking 

HOS Mandated Rest/Fatigue 1.8 

Showering/Restroom 4.4 

Restaurant/Eating 5.0 

Awaiting Dispatch 5.9 

Staging/Waiting for Loads 6.1 

Weather-related 6.2 

Safety Checks/Load Securement 6.4 

Mechanical Issues/Failures 6.4 

Avoiding Congestion 6.8 

Obtaining Directions 7.6 

Personal Communication 7.8 
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Table 4.2.  Carrier Distribution by Average Rankings of Reasons for Seeking 
Truck Parking 

Reason for Seeking Truck Parking Average Ranking 

HOS Mandated Rest/Fatigue 1.9 

Showering/Restroom 5.0 

Restaurant/Eating 5.2 

Awaiting Dispatch 5.6 

Staging/Waiting for Loads 5.7 

Avoiding Congestion 6.0 

Safety Checks/Load Securement 6.4 

Mechanical Issues/Failures 6.4 

Weather-related   6.5 

Obtaining Directions 7.5 

Personal Communication 7.8 

 

4.2.4 Truck Parking Desired Amenities 

Prioritizing amenities provided an understanding of other aspects of truck parking facilities that may 
further affect their choice to stop along their route, beyond the aforementioned results in section 4.2.3 . 
As before, in tables the most important ranking is a “1”.  Once again, the rankings mirrored the drivers’ 
rakings, with restrooms and fueling services being the most important amenities, and retail stores, 
internet Access, and vending machines being the least essential.  Note that adequate security was 
ranked within the top five amenities by both carriers and drivers, and lighting was ranked fifth by 
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drivers. This would not be surprising as enhancing security, particularly at night can be achieved by 
improvements in lighting.   

 

Table 4.3.  Driver Distribution by Average Rankings of Truck Parking 
Amenities 

Reason for Seeking Truck Parking Average Ranking 

Restrooms 2.7 

Fueling Services 4.2 

Showers 4.4 

Adequate Security 4.7 

Adequate Lighting 4.9 

Restaurant 5.0 

Access to the Interstate 5.2 

Retail Stores 7.1 

Internet Access/Wi-Fi 7.6 

Vending Machines 8.3 
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Table 4.4.  Carrier Distribution by Average Rankings of Truck Parking 
Amenities 

Reason for Seeking Truck Parking Average Ranking 

Restrooms 2.7 

Fueling Services 3.9 

Adequate Security 4.4 

Restaurant 4.5 

Showers 4.7 

Adequate Lighting 5.5 

Access to the Interstate 5.7 

Internet Access/Wi-Fi 7.5 

Retail Stores   7.6 

Vending Machines 8.0 

 

4.2.5 Truck Parking Information Delivery 

Insights to understand how information usage habits and desired information delivery methods for truck 
parking availability was assessed in order to understand which technology choices would provide the 
most benefit for carriers and their drivers.  While on the road, drivers reported accessing the internet 
most often through a laptop (70.8 percent) in the truck or Smartphone.(63.1 percent).  Figure 4.3 shows 
that these two methods predominates considerably over other technology choices, although 
interestingly carriers responded a much higher percentage of choice for Smartphones and Onboard 
devices.  
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Figure 4.3. Driver distribution of preferred technologies for accessing Internet while on the road. 

 

 

Figure 4.4. Carrier distribution of preferred technologies for accessing Internet while on the road. 

 

Perhaps one of the more interesting results, from the perspective of a truck parking availability system 
along the corridor, was the desired notification method by either the drivers or the carriers.  Survey 
participants were provided a list of potential truck parking availability notification methods and were 
asked to rank the methods on a scale of 1 to 6, with 1 being most preferred.  As shown in Table 4.5, 
drivers were most interested in receiving truck parking availability information through roadside 
Changeable Message Signs (CMS) (average ranking of 2.3) followed by Smartphone applications (2.8), 
internet/websites (3.5) and onboard communication systems (3.6).  Drivers were least interested in 
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obtaining the information through a 511 system (3.8) or a dispatcher (5.0).  The rankings from carriers 
were very similar, with a difference in ranking priority only between receiving parking information from 
the Onboard device and Internet/Website portal. 

Table 4.5.  Average Rankings of Truck Parking Notification Methods 

Notification Method Average Driver 
Ranking 

Average Carrier 
Ranking 

Changeable Message Sign 2.3 2.7 

Smartphone Application 2.8 3.9 

Internet/Website 3.5 4.4 

Onboard device 3.6 4.5 

511 3.8 4.7 

Dispatcher 5.0 5.5 

To gain insight as to the desired advanced notification distance of truck parking availability from the 
aforementioned delivery methods, respondents could select from a set of preferred desired upstream 
locations, independent of any other route-specific choices that could be made before reaching the 
parking facilities.  Nearly half (47.6 percent) of the driver respondents indicated that they would prefer 
to receive truck parking availability information 20 miles away from the truck stop/rest area, followed by 
5 miles (37.3 percent) and 10 miles (30.5 percent ) (Figure 4.5).  It should be noted, however, that 30.5 
percent of the driver respondents would like more than one notification.  A number of drivers noted 
that rest areas are typically spaced 30 to 50 miles apart and in rural regions, and privately run truck stop 
options can be limited.  Adequate advance notice of truck parking availability would therefore assist 
drivers with scheduling their stopping location as well as ensure back-up options should their preferred 
location be full.  To conclude, the distribution of preferred locations suggest that multiple advance 
notifications of truck parking availability would assist drivers with scheduling their stopping location as 
well as ensure back-up options should their preferred location be full. 
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Figure 4.5. Driver distribution of preferred distances for receiving truck parking information. 

 

 

Figure 4.6. Carrier distribution of preferred distances for receiving truck parking information. 

 

4.2.6 Acceptable Level of Truck Parking Information Reliability 

The majority (89.2 percent) of drivers reported that the proposed truck parking availability system 
(TPAS) would have to be 85 percent or more reliable for it to be useful to them. Of those, 25.0 percent 
stated that TPAS would need to be 100 percent reliable. Similar to the driver responses, 86.6 percent of 
the carriers surveyed would need TPAS to be 85 percent or more reliable for it to be useful to their 
operations.  A smaller portion of carriers (15.9 percent) would require the system to be 100 percent 
reliable compared to 25.0 percent of drivers (Figure 4.7 and Figure 4.8). 
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Figure 4.7. Driver distribution of acceptable level of reliability. 

 

 

Figure 4.8. Carrier distribution of acceptable level of reliability. 
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4.2.7 Value of Truck Parking Availability Information 

Lastly, the survey informed the team of the potential value of such information in terms of quantifying a 
perceived monitory value of reserving a truck parking space.  While the same percentage of carriers 
reported that they would like the ability to reserve a truck parking spot as drivers (56.5 percent), carriers 
differed slightly on how much they would be willing to pay to reserve a parking spot (Figure 4.9 and 
Figure 4.10).  Noticeably more carriers were unwilling to pay for a parking reservation than drivers (48.1 
percent compared to 36.9 percent). 

 

Figure 4.9. Distribution of drivers by amount willing to pay for truck parking reservation. 

 

Figure 4.10. Carrier distribution by amount willing to pay for truck parking reservation. 
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4.3 USABILITY STUDY CONCLUSIONS 

The survey results provided a foundation for steering engineering design decisions for corridor wide 
truck parking information decisions regarding desired accuracy, information delivery mechanisms, and 
potential deployment conditions to be of most benefit to drivers.  By and large, attitudes and 
perceptions on truck parking availability and information were consistent between the carriers and 
drivers.  The survey results suggest that there was a perceived lack of safe, legal available parking from 
both the carriers and drivers.  Furthermore, a majority of the survey respondents indicated that the 
parking information must be at least 85 percent reliable for it to be useful to their operations (86.6 
percent of carriers, and 89.2 percent of drivers).  

A majority of drivers personally experienced three of the five critical truck parking issues listed in the 
survey at least occasionally, if not more frequently.  These included parking availability on ramps or 
shoulders, rest area time limits and unsafe parking.  In addition, both drivers and carriers ranked HOS 
mandated rest as the single most important reason for seeking parking.  Although there were slight 
differences between employee drivers and owner-operators, the majority of drivers surveyed receive 
less than twenty-four hours of advanced notice for long haul trips, and are subject to change without 
much notice.  Drivers therefore would favor a system that provides notifications of truck parking 
availability en route to their destination, and they apparently have the ability and capabilities to do so 
through multiple devices (onboard, smartphone, laptops).  

An interesting finding regarding en route information however, is that even with a majority of drivers 
indicating they had Internet access, roadside Changeable Message Signs (CMS) were ranked the highest 
preferred method to receive truck parking availability notifications.  While this may seem surprising to 
some, recent regulations relating to driver distraction and cell phone use may be a leading source for 
this preference. In addition, both drivers and carriers prefer to obtain the information 20 miles 
upstream of the parking facility (46.3 percent and 56.4 percent for drivers and carriers respectively).  
There was a secondary smaller peak for five miles upstream as well (37.3 percent and 29.4 percent for 
drivers and carriers respectively).  

Finally, although a large majority of respondents would find parking information useful if at an 
acceptable level of accuracy, and slightly more than half (56.5 percent) would like the ability to reserve a 
spot, a large proportion of the respondents would be unwilling to pay for this service (48.1 percent of 
drivers and 36.9 percent of carriers).  Of those willing to pay a low nominal fee (from $1 dollar to $5 
dollars), there was a discrepancy between drivers (32.1 percent) and carriers (22.2 percent) which 
indicates an association between who would ultimately be responsible for the charge.  The next chapter 
will provide an overview of the truck parking facilities utilized and the system architecture developed to 
deliver the truck parking availability information from the facilities.  
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CHAPTER 5:  TRUCK PARKING SYSTEM IMPLEMENTATION AND 
ARCHITECTURE 

Three public rest areas were deployed along eastbound Minnesota Interstate 94 heading into the twin 
cities.  As mentioned earlier, historically these rest areas are known to frequently reach or exceed 
capacity, although the truck parking volumes were not necessarily distributed evenly for any given 
period of time.  The following sections describe in detail the developed site plans that guided the 
deployments, the communication architecture for providing archival and data broadcasting capabilities, 
and a system monitoring tools for remote maintenance and performance evaluation. 

5.1 TRUCK PARKING FACILITIES CONFIGURATION 

All the implemented facilities follow an outward –oriented design standard, with a separate truck 
parking facility closest to the freeway using slanted parking stalls to remove right-turn angle maneuvers 
into and out of the parking space (thus forming a parallelogram shape for each stall)  [35].  Table 5.1 
summarizes the parking stall width, as measured by the orthogonal distance between the parking lane 
lines, vs. the front stall parallelogram width, as measured by the DGPS corrected survey instrument.  
Enfield and Big Spunk facilities separate private vehicle parking from truck and RV vehicle parking, while 
Elm Creek also contains larger spaces in the private parking facility to accommodate large RV parking. 

Table 5.1.  State Sponsored Truck Parking Stall Dimensions 

 Stall Angle 
deg. 

Stall Length ft. 
(m) 

Stall Width 
ft.(m) 

Stall Depth 
ft.(m) 

Stall Front 
Width ft.(m) 

Elm Creek 34.71±0.31° 84.24±0.24 

(25.68±0.07) 

14.12±0.75 

(4.30±0.23) 

59.83±0.19 

(18.24±0.06) 

19.88±1.19 

(6.06±0.36) 

Big Spunk  49.37±0.32° 

 

88.63±0.74 

(27.01±0.23) 

14.51±0.57 

(4.42±0.17) 

57.71±0.37 

(17.59±0.11) 

22.37±0.71 

(6.82±0.22) 

Enfield 49.06±0.25° 86.57±0.90 

(26.39±0.28) 

14.13±0.24 

(4.31±0.07) 

56.39±0.67 

(17.19±0.20) 

21.70±0.37 

(6.61±0.11) 

A thirty-five-foot-tall (10.7 m) crank-down camera pole meeting roadside AASHTO standards, 
engineered and manufactured by Millerbernd Manufacturing (Windsted, MN), was deployed for all 
sites.  The poles are designed to withstand a minimum wind speed of 90 MPH (145 KPH) and provide 20 
years of service life.  Each camera pole supports three network Power-over-Ethernet outdoor PTZ HD 
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cameras (Axis Communications AB, Lund, Sweden).  Below grade conduits were installed from a secured 
location within the visitor shelter to a camera pole, and then between each pole, to carry 110/120 VAC 
power and Ethernet network communication using steel-jacket single mode Ethernet fiber.  A pole 
mounted NEMA weatherproof cabinet housed outdoor rated Ethernet switching hardware and fiber 
transceivers, Power-over-Ethernet (PoE) injectors for the cameras, and a remote controllable outdoor 
Nema-5 AC power control with surge protection used to allow remote maintenance tasks and provide 
additional lightening protection to the equipment.  Three desktop Intel i7 3.5 GHz clock speed PCs 
running Linux were installed at each site to acquire and store image data from the cameras to use for 
analysis and detection, upload the detected parking space status, and execute of the detection module 
algorithm across the acquired image sets.  Lastly, a 1500KV UPS was used to guard against short black-
out periods (less than roughly 15 minutes), and brown-outs, as well as to perform a stable shutdown 
and power-up of the router and computing equipment in the advent of longer power outages [36].  
There was no such power protection for the camera hardware.  

5.1.1 Elm Creek 

The first site to be built and brought online was Elm Creek (Figure 5.1).  Before fixed infrastructure was 
installed at the site, several possible camera locations and heights were tested by positioning a camera 
instrumented trailer mast around the perimeter of the parking facilities and then processing the 
collected data using the 3D SfM reconstruction approach (section 3.1 ). Elm Creek had the smallest 
parallelogram tilt angle and a significantly larger amount of space behind the stall to the end-of-
pavement or curb line than the other two truck parking areas (38.5 to 40 ft).  The distance between the 
curb to the front of the stalls measured 32.12ft (9.79 m), and the distance from the back of stall =38.52ft 
(11.74m).  The 3 front-of-stall facing poles were approximately 15 (4.5 m) to 30 feet (9.1 m) from the 
curb to cover all 15 parking spaces. 

Installation by professional contractors was done in the fall of 2012, with power and internet service 
enabled in mid-January 2013.  As with all sites in the study, before installation could commence, the 
plans went through the standard MnDOT Right-Of-Way permitting and approval process with the 
University of Minnesota and MnDOT. 
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Figure 5.1. Elm Creek camera system site plan. 

 

Figure 5.2. Elm Creek truck parking facility and camera poles deployment. 
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5.1.2 Big Spunk Lake  

The system installation for Big Spunk Lake rest area was built starting in October of 2013, with wireless 
internet service enabled in late January 2014.  The final deployment consists of three front-of-stall facing 
camera poles that were positioned between 15 to 30 feet from the curb.  The site layout to cover the 16 
parking spaces are illustrated in Figure 5.3.  The curb-to-front of stall and curb-pavement edge-to-back-
of-stall at Big Spunk measured 29.63 ft (9.03m), and 30.54(9.31 m) respectively. 

 

Figure 5.3. Big Spunk Lake camera system site plan. 

(conduit paths from poles to shelter removed for clarity) 
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Figure 5.4. Big Spunk Lake truck parking facility and camera poles deployment. 

5.1.3 Enfield 

The system installation for Enfield rest area began in the late fall of 2013 and was completed in April of 
2014, after spring ground thaw.  Note that this sight is the most heavily wooded; due to tree branches 
that would have blocked camera views at the initial desired camera pole locations, a fourth camera pole 
was therefore placed at the rear of the parking lot facilities, affording back-of-the stall viewpoints.  The 
site plans and installed pole locations to cover the 18 parking stalls are shown in Figure 5.5 and Figure 
5.6. 
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Figure 5.5. Enfield truck parking camera system site plan. 

(conduit paths from poles to shelter removed for clarity) 
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Figure 5.6. Enfield truck parking facility and camera poles deployment. TOP: front parking stall view,  
BOTTOM: cameras view back end of parking stalls 
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The system installation for Enfield curb-to-front of stall and curb-pavement edge-to-back-of-stall 
measured 30.34 ft. (9.25m), and 32.8 ft. (10.00m) respectively. 

5.2 DATA DISSEMINATION ARCHITECTURE 

A software system architecture was developed to enable region-wide parking availability monitoring and 
dissemination.  The occupancy detection data are packaged as XML reports containing the image 
acquisition UTC time, a site identification number, the parking occupancy status, and a unique user 
identifier (UUID) for each data set collected.  The XML reports are then uploaded through user 
authentication over Secure Socket Layer (SSL) to the Data distribution and Database server (DDS) via a 
HTML RESTtful interface (Representational State Transfer via HTTP services on Windows Server 2012 
.NET).  Communication between the site and the DDS is achieved using 4G LTE cellular service (Figure 
5.7). 

 

Figure 5.7. System architecture for archiving and disseminating truck parking information 

Upon receipt of an XML occupancy report from a given site, the DDS recorded the reception time and 
archived the report in a relational PostgreSQL database.  The database also stores meta-information for 
each site; their geographic locations, designed parking capacity, E-911 addresses and highway mile post 
descriptors.  A front-end web interface on the DDS was used to inspect current occupancy counts in 
real-time as well as query the database over specified periods to obtain historical count reports.  The 
data was also disseminated to three different information portal systems: 1.  Web-based information 
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dissemination portal for commercial freight operators, smarpark4trucks.org, 2. In-cab services and 3, 
Roadside Changeable Message Signs.  An Intelligent Roadway Information System server (IRIS) 
[37]queries the DDS to communicate with roadside Variable Message Signs using the (NTCIP) 
communication protocol [38].  The query mechanism was achieved through a RESTful interface which 
returned a timestamped MULTI formatted text string.  The IRIS query was set to pole the TPAS DDS 
every 30 seconds.  

The web and in-cab information portals were managed and lead by ATRI. The web portal parking 
notifications were updated from the UMN DDS via an XML feed through an authenticated FTP upload 
client connection executed up to once every 30 seconds.  Only the total occupancy count information 
was utilized.  Other XML elements included the designed parking capacity of the facilities, the WGS84 
Longitude, Latitude coordinates, the Mile Post, a unique facilities numeric identifier, a name description, 
and the UTC ISO 8601 date-timestamp with the local DST time zone correction at the facilities, all of 
which are processed and then displayed on the web user interface when the operator clicks on the 
parking icon located on the google map (Figure 5.8). 

 

Figure 5.8. SmartParkforTrucks.org operator web portal 

The in-cab embedded application, SmartPark, consisted of a driver graphical user interface, cellular 
modem internet connection, and embedded GPS receiver embedded into an in-cab device.  The 
proprietary communication protocols between the in-cab device and the geolocation services platform 
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were developed by PeopleNET, a division of Trimble, located in Minnesota. SmartPark implemented a 
‘hands-free’ application interface that provided automated regular parking notification updates every 
five minutes, or through geo-fence triggered parking status notifications, of the truck parking facilities 
located downstream of the traveling vehicle.  The geo-fences were spaced every five miles from twenty 
miles downstream of the closest oncoming truck parking facilities.  Further interface details are 
described in the concepts of operation field tests described in 7.1 .   
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CHAPTER 6:  TRUCK PARKING SPACE DETECTION PERFORMANCE 

Sufficient capability for self-calibration and self-maintenance must be achieved to avoid human 
intervention to retain accuracy and operate 24/7.  The system was evaluated by first collecting and 
quantifying detection performance from a validation dataset, and then subsequent detection 
performance capabilities over other varied periods of time across all the implemented sites.  A detailed 
summary of the methodology used for quantifying detection performance and validation is presented 
next in sections 6.1  and 6.2  below.  Several other collected data sets were further evaluated as 
discussed in section 6.3 .  

6.1 DETECTION PERFORMANCE MEASUREMENT METHODOLOGY 

A manual ground-truth process was developed to interactively label the parking status of several 
observed spaces which were processed by the vision module detection algorithm. General attributes 
pertaining to weather conditions, double-parking, private vehicles vs. trucks (SUTs, buses, and large RVs 
were also classified as trucks), visibility of parking stall lane lines, lens obstructions, or other anomalies 
that may contribute to detection or human observation errors, was also be annotated by the observer.  
A single camera view from each pole viewing the intended set of parking stalls to be detected was 
displayed to the user by the manual labeling software (Figure 6.1). 

 

Figure 6.1. Observed ground-truth labeling interface. 

Detection accuracy was evaluated based on 1) Per space accuracy, and 2) Total ‘count’ accuracy.  To 
evaluate per-space accuracy, each parking status state (Occupied vs. Vacant) is compared to the 
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manually observed parking status, at each moment of time.  Then the accuracy is defined from the 
aggregate measure over all such comparisons by: 

 𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑟𝑟𝑎𝑎𝑐𝑐𝑎𝑎 =  �1 −  
𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

(𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹)
� ∙ 100% (6.1) 

Where FP = number of false positive (occupied) detections, and FN = number of false negative (vacant) 
detections, and TP and TN represent the correct parking status detections.  Furthermore, the detection 
sensitivity vs. specificity can also be calculated to provide insight into contributions for each of the two 
per-space false detection parking states on the overall accuracy in terms of detection sensitivity and 
specificity: 

 𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑎𝑎 = �
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
� ∙ 100%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑐𝑐𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑎𝑎 =  �

𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹

� ∙ 100% (6.2) 

Thus sensitivity indicates the ability of the detection algorithm to correctly classify a space as occupied, 
while the parking detection specificity indicates the level of miss-detection of vacant parking spaces. 

The second detection accuracy measurement compared the total occupancy count by summing all 
spaces over a given sample point in time.  This performance measure was relevant from a system 
usability perspective (refer to Chapter CHAPTER 4: ) since it duplicated the truck parking notifications 
disseminated to the operator or driver during the field operational tests.  

6.2 PARKING SPACE DETECTION VALIDATION DATA SET 

In order to access the detection algorithm to adequately subtract ‘foreground’ vehicle objects from the 
‘background’, initial datasets were harvested from the first operational site, Elm Creek.  The process 
entailed determining a boundary threshold to classify the parking space status as either vacant or 
occupied over diverse weather and lighting conditions (Table 6.1).  Six parking spots were 
simultaneously detected by three camera view images on a single pole acquired at a point in time.  The 
dataset samples for each such point in time were harvested between every five to ten minutes.  The 
detection classification threshold was then adjusted according to the minimum detection error (FP + FN) 
using the Golden Section Search algorithm in MATLAB.  
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Table 6.1.  Validation Data Set  

Data Collection Period Parking Events 
Ground-Truthed 

Time Samples 
Collected 

Snow Event 
Time 

Samples 

Rain Event 

Time Samples 

04/10/2013 – 04/12/2013 3,834 639 190 (29.7%)  

06/07/2013 – 06/10/2013 2,052 342  61 (17.8%) 

02/21/2013 – 02/28/2013 10,956 1,826   

02/08/2013 – 02/11/2013 1,716 286 18 (6.2%)  

03/03/2013 – 03/05/2013 3,030 505 169 (33.4%) 1 (0.2%) 

Total 21,588 3,598  382 67 

The resulting detection accuracy truth table for the dataset is summarized in Table 6.2. The Left half 
presents the confusion matrix of miss-detections for occupied and vacant parking events. The overall 
accuracy was 98.0 percent.  The accuracy during heavy snowing and raining events were reduced to 95.4 
percent, which suggests that the weather events effected detection accuracy (p < 0.01).  Other miss-
detections arose from observed lane-encroachment from double-parking, catching dynamic maneuvers 
of a vehicle entering or exiting a parking space, or very dark/low-contrasting vehicles at night (Figure 
6.2).  In any case, the initial validation dataset indicated persistent vehicle ‘foreground’ detection could 
be achieved from the 3D reconstruction and alignment methodology. 
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Table 6.2.  Validation Data Set Detection Results: All Samples 

 Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

12,621 

(TP) 

98 

(FP) 

97.42% 98.86% 98.00% 

GT-Observed 
Vacant 

334 

(FN) 

8,535 

(TN) 

   

 

Table 6.3.  Validation Data Set Detection Results: Weather Event Samples Removed 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

10,797 53 97.67% 99.33% 98.36% 

GT-Observed 
Vacant 

256 7,852 
   

 

Table 6.4.  Validation Data Set Detection Results: Weather Event Samples 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

1,824 45 96.00% 93.82% 95.40% 

GT-Observed 
Vacant 

76 683 
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Missed vehicles Maneuvers Lane encroachment 

   

  

 

  

 

Figure 6.2. Conditions that resulted in parking detection errors.   

6.3 DETECTION PERFORMANCE RESULTS 

Additional detection datasets were harvested from local data storage at the sites (Table 6.5). The data 
sets consisted of around-the-clock continuous periods of time spanning between 3 and up to 9 days, 
each of which are several days, or weeks apart from one another.  The periods of time were selected at 
random although they intentionally included mid-week periods (between Tuesday and Thursday) 
Historically at these rest areas mid-week periods tended to have higher truck parking volume activity 
than on weekends.  The sampling period of ground-truth labeled examples ranged between one minute 
and five minutes, as a practical compromise between the manual ground-truth labeling process and 
observing variability in parking scenes across different time periods (the last dataset, encompassing 
several weeks, was sampled on the hour).  The target detection update rate during operation was set to 
one minute intervals.  During the operation of TPAS, parking status target update rate for a group of 
spaces was set to one minute.  
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Table 6.5.  Detection Performance Data Set 

Site Data Collection Period 

Park 
Spaces 

Observed 
Parking Events 

Ground-Truthed 
Time Samples 

Collected 

Elm Creek  08/30/2013 – 09/08/2013 15 114,521 23,653 

Enfield 10/07/2014 – 10/10/2014 18 109,580 14,055 

Enfield 10/20/2014 – 10/22/2014 18 110,686 14,207 

Big Spunk 08/25/2014 – 08/29/2014 16 62,903 15,303 

Big Spunk 10/07/2014 – 10/09/2014 16 51,364 12,646 

Big Spunk 10/20/2014 – 10/22/2014 16 51,271 12,606 

Elm Creek 08/29/2013 – 12/23/2013 6 16,692 2,782 

Total   517,017 95,252 

The following two sections quantify detection performance in terms of per-space detection accuracy, 
and then as an aggregate occupancy ‘count’ of all spaces.  As mentioned previously, the aggregated 
occupancy count was germane to the parking availability notifications broadcasted to drivers and 
carriers.  

6.3.1 Per Parking Space Detection Performance 

Tables Table 6.6 through Table 6.12 summarize the overall space detection accuracy for the three public 
truck parking facilities.  The detection capabilities were fairly consistent between the implemented sites, 
with per space detection accuracy rate between 96 percent and 99 percent.  Table 6.12 summarizes a 
dataset to investigate a larger range of time a sample set of data by harvesting and ground-truth 
labeling one hour intervals over several weeks of time at Elm Creek. The supposition for doing so was 
that the data set would capture more sample-to-sample variability in parking behaviors and 
environmental conditions.  The results from were from a period from August 29th 2013 through 
December 23rd 2013. 
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Table 6.6.  Elm Creek, 08/30/2013 – 09/08/2013, Detection Results 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

69,026 195 98.94% 99.56% 99.18% 

GT-Observed 
Vacant 

739 44,561 
   

 

Table 6.7.  Enfield, 10/07/2014 – 10/09/2014, Detection Results 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

34,546 252 96.15% 98.24% 98.52% 

GT-Observed 
Vacant 

688 27,922 
   

 

Table 6.8.  Enfield, 10/20/2014 – 10/22/2014, Detection Results 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

24,983 878 96.69% 97.70% 97.29% 

GT-Observed 
Vacant 

854 37,218 
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Table 6.9.  Big Spunk, 08/25/2014 – 08/29/2014, Detection Results 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

29,367 271 98.90% 98.87% 98.88% 

GT-Observed 
Vacant 

328 23,632 
   

 

Table 6.10.  Big Spunk, 10/07/2014 – 10/09/2014, Detection Results 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

29,209 283 99.60% 98.72% 99.22% 

GT-Observed 
Vacant 

118 21,889 
   

 

Table 6.11.  Big Spunk, 10/20/2014 – 10/22/2014, Detection Results 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

25,859 822 99.05% 96.73% 97.91% 

GT-Observed 
Vacant 

248 24,342 
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Table 6.12.  Elm Creek, 08/29/2013 – 12/23/2013, Detection Results 

 
Occupancy 
Detection 

Vacant 
Detection 

Sensitivity Specificity Accuracy 

GT-Observed 
Occupancy 

10,697 174 96.2% 96.88% 96.42% 

GT-Observed 
Vacant 

423 5,398 
   

The space detection performance defined by (6.1) and (6.2) can also be characterized on a per-space 
basis over a given range of time, or aggregated over a group of spaces for specific periods of time, in 
order to further study accuracy through space and time. 

Figure 6.3 represents the aggregation of all parking space detections between daytime (sunrise to 
sunset) and nighttime (sunset to sunrise) hours for each of the three sites3.  Under all sites accuracy 
diminishes during night-time hours (Elm Creek, Z=-14.48, p < 10-6, Enfield, Z = -10.35, p < 10-6 , Z = -15.76, 
p < 10-6  ).  The reason for diminished accuracy at night is due to the fact that darkness reduced the signal 
to noise ratio and ability of the cameras to sharply focus the scene in some instances.  This in turn 
reduced either the 3D point density of the reconstructions, or the accuracy of the bundled intrinsic and 
extrinsic camera calibration parameter estimates, because fewer distinct matching features were 
extracted from the images.  The result was that, for the facilities which were observed to fill up and 
reach capacity faster and more often during the weekday evenings, the false negative detections further 
reduced the detection accuracy even when the sensitivity (correct occupancy detection rate) is 
preserved.  Such false vacancy (negative) detections were also typically associated with very dark 
colored vehicles (a typical observation is shown in Figure 6.2).  At night, when the contrast is further 
reduced, this was especially true. On the other hand, denser but noisy reconstructions tended to result 
in more over counting and thus the specificity was therefore reduced.   

                                                            

3 As calculated from the MATLAB Air Sea Toolbox, which computes sunrise and sunset using the 
expressions taken from Appendix E in the 1978 edition of Almanac for Computers, Nautical Almanac 
Office, U.S. Naval Observatory. The calculations are valid for the years 1800-2100, with a solar 
declination accuracy of 1 minute.  
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Figure 6.3. Daytime vs. nighttime truck parking space detection performance. 

In addition to investigating the detection performance between night and day time hours, the 
aforementioned descriptive label categories in the ground-truth datasets can be used to further 
examine possible detection error causality.  Tables Table 6.13 through Table 6.15 summarize the 
frequency of such observed and labeled phenomena, categorized by manual observations using the 
ground-truth derived labels for all the data collected at each site.  Some aggregations of the ground-
truth labeled observations were done to simplify the analysis.  The observed separated vehicle enter 
and exit maneuvers were combined together.  Human observed lens blur affects are considered as the 
anomalous camera observation, while lens obstructions – from any source was grouped as an 
anomalous lens condition.  Both observed snowfall and rain fall conditions were grouped as a single 
weather condition.  There was no attempt to categorize sunny vs. cloudy days.  Double parked vehicles 
were categorized when any part of the vehicle was observed as being over the parking lane line.  For the 
Lines Not Visible category, such instances typically can occur during or after snow fall which covered the 
parking lane lines (as shown in Figure 6.1 a visual template was overlaid on the image as a guide to help 
disambiguate the parking spaces). Note that more than one such observation label category could have 
been annotated for any given observed image sample. Lastly, there was no distinction between vehicle 
types (other than private vehicles), or the number of observed vehicles double parked or performing a 
maneuver.  
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Table 6.13.  Elm Creek  Detection Error Rate Associated with Labeled Data 

 Daytime  Nighttime All Day Total Samples 
Categorized 

Error-Maneuvers 18.92% 4.81% 10.06% 476 

Error-Double Parked 39.37% 23.17% 29.19% 748 

Error-Lines not vis. 43.92% 27.33% 33.50% 1088 

Error-Weather 8.29% 8.56% 8.47% 792 

Error-PV 21.69% 3.18% 10.06% 1334 

Error-Lens obstruct 0.41% 0.25% 1.59% 65 

Error-Camera 16.85% 4.16% 8.88% 602 

No label 11.74% 60.52% 42.43%  

 

Table 6.14.  Big Spunk Lake  Detection Error Rate Associated with Labeled Data 

 Daytime  Nighttime All Day Total Samples with 
Label 

Error-Maneuvers 15.46% 3.37% 7.49% 431 

Error-Double Parked 5.15% 0.00% 1.76% 61 

Error-Lines not vis. 0.00% 0.00% 0.00% 0 

Error-Weather 18.16% 16.33% 16.95% 2565 
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Error-PV 15.71% 3.11% 7.41% 2334 

Error-Lens obstruct 0.00% 0.00% 0.00% 3 

Error-Camera 0.37% 0.00% 0.13% 18 

No label 50.80% 78.59% 69.11%  

 

Table 6.15.  Enfield Detection Error Rate Associated with Labeled Data 

     

 Daytime  Nighttime All Day Total Samples with 
Label 

Error-Maneuvers 9.81% 3.00% 5.39% 314 

Error-Double Parked 4.16% 0.69% 1.91% 61 

Error-Lines not vis. 0.00% 0.00% 0.00% 0 

Error-Weather 0.00% 0.00% 0.00% 0 

Error-PV 10.34% 1.73% 4.75% 607 

Error-Lens obstruct 0.00% 0.00% 0.75% 132 

Error-Camera 0.00% 0.00% 0.00% 0 

No label 77.08% 93.08% 87.46%  

Examining the tables Table 6.13 through Table 6.15, a majority detection errors were in general not 
associated with any of the observed label categories during the evening hours across all of the sites.  In 
contrast a significantly greater proportion of the detection errors were associated with such labels 
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during the day time hours.  Other trends indicate detection errors occurred with observations of parked 
vehicles that encroached into other lanes, when vehicles were observed to be maneuvering into or out 
of a parking stall, and the largest proportions – when there was the inability to observe the parking lane 
lines from the camera image.  Observed private vehicles also were associated with detection errors with 
a similar proportion to the aforementioned factors. 

Although the information in the tables do offer insight into some of the possible conditions that may be 
associated with detection error, the significance of such conditions as it relates to detection error 
outcomes can be further corroborated.  Note that because multiple labels were added for a given 
sample, and the number of each condition labels vary across each condition, the tables do not 
necessarily reflect the significance of the associations.  Specifically, we wish to understand how each of 
the given observations influences the likelihood of observing a detection error, and the significance of 
such an influence.  Such questions can be addressed using Logit Regression analysis, since the observed 
detection errors can be represented by a set of discrete outcomes [39].  With the Logit Regression 
analysis paradigm, one or more observed detection errors were generalized as a binary variable, with 
the response variable at sample i, Yi=1 representing a detection error, otherwise for no observed 
detection errors, Yi =0.  The likelihood of a given detection error was then the probability 𝑝𝑝(|𝑌𝑌𝑖𝑖 = 1) of 
which the error occurred from one observation to the next.  It therefore follows that the likelihood of 
that no detection error occurred is 1 −  𝑝𝑝(|𝑌𝑌𝑖𝑖 = 1) =  𝑝𝑝(|𝑌𝑌𝑖𝑖 = 0).  Assuming such a detection error 
event outcome was independent and followed a Bernoulli distribution (e.g., a detection error did not 
depend on a previous outcome), the probability of observing a detection error for a given sample event i 
is commonly expressed using the following likelihood equation: 

 𝑓𝑓(𝑌𝑌𝑖𝑖;𝑝𝑝) = 𝑝𝑝(|𝑌𝑌𝑖𝑖 = 1)𝑌𝑌𝑖𝑖 ∙ (1 −  𝑝𝑝(|𝑌𝑌𝑖𝑖 = 1))𝑌𝑌𝑖𝑖−1  ;  𝑌𝑌𝑖𝑖 = {0,1}  (6.3) 

where 𝑓𝑓(𝑌𝑌𝑖𝑖; 𝑝𝑝) is the probability mass function. In the Logit Regression formulation, a functional 
equation to relate  𝑗𝑗 = 1,2, …𝑚𝑚  observations (or features) xi j at sample i, to the probability  𝑝𝑝(𝒙𝒙𝑖𝑖) can 
be expressed by: 

 𝑝𝑝(𝒙𝒙𝑖𝑖) =  
𝑠𝑠𝛽𝛽0+𝛽𝛽1∙𝑥𝑥1,𝑖𝑖+𝛽𝛽2∙𝑥𝑥2,𝑖𝑖⋯𝛽𝛽𝑚𝑚∙𝑥𝑥𝑚𝑚,𝑖𝑖

1 + 𝑠𝑠𝛽𝛽0+𝛽𝛽1∙𝑥𝑥1,𝑖𝑖+𝛽𝛽2∙𝑥𝑥2,𝑖𝑖⋯𝛽𝛽𝑚𝑚∙𝑥𝑥𝑚𝑚,𝑖𝑖
 

 
(6.4) 

A useful representation is the summated log-likelihood, 𝐿𝐿(𝜷𝜷), derived by substituting (6.4) into (6.3) and 
taking the natural log, yielding: 

 
 𝐿𝐿(𝜷𝜷) =  ��𝑌𝑌𝑖𝑖𝑙𝑙𝑖𝑖�𝑝𝑝(𝒙𝒙𝑖𝑖)� +  (𝑌𝑌𝑖𝑖 − 1)𝑙𝑙𝑖𝑖�1 − 𝑝𝑝(𝒙𝒙𝑖𝑖)��

𝑛𝑛

𝑖𝑖=1

  (6.5) 
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Taking the natural log of both sides, of (6.4) provides the function to compute 𝑝𝑝(𝑥𝑥𝑖𝑖), e.g. 

 𝑙𝑙𝑖𝑖 �
𝑝𝑝(𝒙𝒙𝑖𝑖)

1 − 𝑝𝑝(𝒙𝒙𝑖𝑖)
� =  𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑥𝑥1,𝑖𝑖 + 𝛽𝛽2 ∙ 𝑥𝑥2,𝑖𝑖 ⋯𝛽𝛽𝑚𝑚 ∙ 𝑥𝑥𝑚𝑚,𝑖𝑖 

 
(6.6) 

Any attribute label j = 1,2,..m, at sample i, xi j, is categorized with xi = { 1,0}.  For this analysis the very 
simple structural model of (6.6) was assumed. 

The level of significance for each label in 𝒙𝒙𝑖𝑖  can be obtained by straight forward analysis of variance for 
each of the resulting estimate of coefficients, �̂�𝛽0,  �̂�𝛽1,  �̂�𝛽2 … �̂�𝛽𝑚𝑚.  Inspection of the model yields the 
following interpretation.  For coefficients that are less than zero, the negative relationship in (6.6) 
effectively reduces the influence of the labeled observation on the log ratio of the detection error 
probability outcome, while a positive value will have the opposite effect.  A value �̂�𝛽𝑗𝑗 = 0, indicating no 
influence, can be thought of as a fair ‘coin flip’ probability—that is equation (6.4) would compute a 
probability of  ½ = 0.5 (ignoring all other terms).  Finding estimates of �̂�𝛽0,  �̂�𝛽1,  �̂�𝛽2 … �̂�𝛽𝑚𝑚 is done by taking 
the partial derivative with respect to each coefficient,  𝛽𝛽𝑗𝑗   , of (6.6), and setting each of the partials equal 
to zero to find the maximum of the function.  Such a maximum-log-likelihood solution for the set of 
equations is achieved numerically. Further details of the derivation and common solution strategies are 
described in [39].  The MATLAB statistical toolbox was used to solve the structural model using the 
aforementioned technique.  Equation (6.6) is also used to infer the relative significance between any 
two models, which is computed by taking the difference between the two 𝐿𝐿(𝜷𝜷)’s (equivalent of the log 
ratio), and multiplying this difference by 2.  The result equates to a Chi-square cumulative probability 
𝜒𝜒(𝜈𝜈)2 with 𝜈𝜈 = 𝑚𝑚 degrees of freedom.  The null hypothesis is that the covariates in question are not 
significant (i.e., the coefficient is zero).  For example, the significance of the model itself can be 
calculated with the hypothesis that all the covariates (including the constant) are zero, and thus the 
second ‘model’ is based only on the overall expected probability value from a set of response variables – 
in this case the number of samples with at least one detection error divided by the number of samples 
associated with a label. 

The observed events cannot be controlled through experimentation and thus processing data to provide 
an equal --and very large, sample number of such label occurrences across all sites under different 
control conditions representative of each type of labeled observation was not feasible.  Although 
parking detection performances do vary somewhat from each site, all the sample data associated with 
one, or more, of the aforementioned categorical labels across the sites were aggregated together, 
resulting in 5,648 daytime samples, and 4,202 nighttime samples containing one or more ground-truth 
labeled categories, with 1,751 samples containing at least one False Positive (621) or False Negative 
(1,234) detection error.  Lastly, in the analysis, an additional ‘label’ representing daytime vs. nighttime 
was added to the model to understand if such a factor may also be significant. 



54 

Table 6.16.  Detection Error Response Logit Regression Results 

Observable Beta 
Coeff. 

t-statistic SE p-value 

(constant term) -2.3888 -24.8964 0.0960 0 

Error-Maneuvers 1.7407 16.4690 0.1057 0 

Error-Double Parked 2.0757 19.6668 0.1055 0 

Error-Lines not vis. 1.2494 13.2308 0.0944 0 

Error-Weather 0.1136 1.1999 0.0946 0.2302 

Error-PV. 0.1153 1.1787 0.0978 0.2385 

Error-Lens obstruct 0.3126 1.3240 0.2361 0.1855 

Error-Camera -0.1853 -1.4528 0.1276 0.1463 

𝐿𝐿(𝜷𝜷)= -3867.52     

 

Table 6.17.  Detection Error Response Logit Regression Results, Day and 
Nighttime 

Observable Beta 
Coeff. 

t-statistic SE p-value 

(constant term) -2.3652 -24.0504 0.0983 0 

Error-Daytime -0.0651 -1.0641 0.0612 0.2873 

Error-Maneuvers 1.7365 16.4275 0.1057 0 
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Error-Double Parked 2.0689 19.5854 0.1056 0 

Error-Lines not vis. 1.2639 13.248 0.0954 0 

Error-Weather 0.1180 1.2460 0.0947 0.2128 

Error-PV. 0.1179 1.2052 0.0978 0.2281 

Error-Lens obstruct 0.3463 1.4533 0.2383 0.1461 

Error-Camera -0.1929 -1.5057 0.1281 0.1321 

𝐿𝐿(𝜷𝜷) = -3868.08     

Table 6.16 displays the overall structural model results, while Table 6.17 added the daytime (𝑥𝑥𝑗𝑗 = 0), 
nighttime (𝑥𝑥𝑗𝑗 = 1) into the regression model as another covariate.  The second column is the standard 
error normalized t-value statistic and an absolute value (two-tailed) greater than for example, |t|=1.96 
is indicative of committing a type I error at p < 0.05 (rejecting that the label indeed has no effect).   Note 
that the aforementioned Wald test indicates the level of significance of the variable and does not 
necessarily provide insight into its contribution to predicting a response (detection error).  The standard 
errors of each coefficient are provided in the third column of the tables, and for most factors were 
relatively small and of similar values with exception of labels associated with lens obstruction and to 
some degree, camera-based anomalies.  This implies a reasonable balance of information amongst the 
label variables for the structural model. 

Apparently, only a very marginal association between daytime and nighttime detections with either 
False Positives (FP), False Negative (FN) detection errors was revealed ( 𝜒𝜒(1.12, 𝜈𝜈 = 8)2 = 0.0167 >
0.01).  The other logit regression coefficients were not affected too much by adding this factor to the 
model.  

These findings support the earlier results that vehicle maneuvers, double-parked vehicles, and the 
inability to locate lines were associated with detection errors in general.  Yet the structural model does 
not consider if in fact, there was a tendency to affect detection errors associated with FP or FN 
detections.  To explore this relationship, the logit model was formulated with detection error response 
variable 𝑌𝑌𝑖𝑖  was categorized as a sample response containing strictly FP errors (Table 6.18), and then a 
second model whereby the response contains strictly FN errors (Table 6.19).   
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Table 6.18.  False Positive Detection Response Logit Regression Results 

Observable Beta 
Coeff. 

t-statistic SE p-value 

(constant term) -2.9075 -19.8487 0.1465 0 

Error-Daytime 0.3380 3.8779 0.0872 0.0001 

Error-Maneuvers 0.5171 3.1228 0.1656 0.0018 

Error-Double Parked 0.0311 0.2121 0.1467 0.832 

Error-Lines not vis. 1.1795 9.0907 0.1297 0 

Error-Weather 0.4022 2.9212 0.1377 0.0035 

Error-PV. -1.5019 -8.5844 0.175 0 

Error-Lens obstruct -0.1665 -0.5307 0.3137 0.5956 

Error-Camera -0.6660 -3.8351 0.1737 0.0001 

𝐿𝐿(𝜷𝜷) = -2079.1244     

 

Table 6.19.  False Negative Detection Response Logit Regression Results 

Observable Beta 
Coeff. 

t-statistic SE p-value 

(constant term) -3.3623 -27.6253 0.1217 0 

Error-Daytime -0.2571 -3.4705 0.0741 0.0005 

Error-Maneuvers 2.3854 19.0636 0.1251 0 
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Error-Double Parked 2.8590 22.3739 0.1278 0 

Error-Lines not vis. 1.0629 9.0767 0.1171 0 

Error-Weather -0.4715 -3.7928 0.1243 0.0001 

Error-PV. 1.0436 8.6766 0.1203 0 

Error-Lens obstruct 1.0533 3.5507 0.2967 0.0004 

Error-Camera 0.3253 2.0093 0.1619 0.0445 

𝐿𝐿(𝜷𝜷) = -2891.5886     

With the detection responses separated, the influences between each of the covariates was much 
different. In this case, weather and daytime vs. nighttime were significant, as well factors related to 
private vehicle observations.  Lens obstructions and double parked vehicle observations had no 
significant associations with FP type detection errors.  On the other hand, all the covariates (labeled 
conditions) for the FN detections were significant, with exception of the Camera anomaly being the 
weakest, fall below the p < 0.01 level.  

6.3.2 Space Detection Performance Summary 

Some general concluding comments are in order. All the Logit Regression models were highly significant, 
with respect to random chance predictions using the overall mean probability of the response variable 
(All Logit Regression model cumulative probabilities were associated with  𝜒𝜒(∙, 𝜈𝜈 = 8)2 <  10−5).  The 
trends were what should be expected for future implementations and suggest where detection 
performance can be improved for future deployments.  However, one should not assume that the 
associations will be quantitatively similar. There could be other endogenous variables that affect 
detection performance that have not been revealed in this study. In addition, there were large 
variations in the total number of each of the labeled events recorded.   For example, if the camera 
image was labeled as blurry does not infer other camera images were blurry as well.  Of course the 
opposite can be true: one image was clear and yet one or more of the multi-camera views which were 
not observed may in fact be blurry.  In some sense, this exemplifies the robustness of the multi-view 
approach in that detection recovery was achieved by using information from the other cameras (e.g. the 
features and resulting 3D reconstructions) as evident from generally weak associations with detection 
errors. A similar circumstance may be associated with a lens obstruction, which could also have been 
associated with identified weather events as well.  
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6.3.3 Space Occupancy Count Performance Analysis 

A parking status for all the spaces was imputed from within the Data Distribution Server by aggregating 
the latest detection output in time for each group of spaces.  The same procedure was emulated within 
this analysis for the detection and the ground-truth data and then taking the difference between the 
two accumulated occupancy status values to examine under and over counting.  Figure 6.4 illustrates 
the time series plot for Elm Creek, which shows that this rest area frequently reached parking space 
capacity primarily during evening hours.  Similar trends were also observed for Big Spunk Lake and 
Enfield rest areas (Figure 6.5 and Figure 6.6).  

 

Figure 6.4. Elm Creek rest area truck parking space total occupancy counts over period 08/30/2013-
09/08/2013. 
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Figure 6.5. Big Spunk Lake rest area truck parking space total occupancy counts over period 10/07/2015 – 
10/07/2015. 

 

 

Figure 6.6. Enfield rest area truck parking space total occupancy counts over period 10/07/2015 – 
10/09/2015. 

Total count accuracies were assessed by accumulating the occupancy count errors across 6,409 time 
samples for Elm Creek, 9,436 time samples for the Big Spunk Lake, and 8,044 time samples for Enfield.  
The space count occupancy accuracy for the Elm Creek, the highest accuracy out of the three rest areas, 
was within ±1 count 99.1 percent of the time and within ±2 counts 99.9 percent of the time.  Matching 
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counts between the ground-truth observations and detections occurred 88.3 percent of the time.  For 
Big Spunk Lake, the overall count was within ±1 count 96.5 percent of the time, within ±2 counts 98.8 
percent of the time, and within ±3 counts 99.7 percent of the time.   Matching counts between the 
ground-truth observations and detections occurred 83.7 percent of the time.  The overall accuracy for 
Enfield had similar total space occupancy count errors as Big Spunk Lake sans the matching count 
proportion; the accuracy was within ±1 count 95.6 percent of the time, within ±2 counts 98.9 percent of 
the time, within ±3 counts 99.7 percent of the time, and matched the ground-truth labeled occupancy 
counts 73.5 percent of the time.  

6.3.4 Parking Detection Communication Performance 

During the initial phases of online testing and evaluation, the parking detection sampling period was set 
to two minutes apart, and subsequently reduced to the current desired sampling period range of one to 
one and a half minutes at the beginning of the concept of operations testing.  An average ± standard 
deviation time of 33.0±12.0 seconds (N=16,216) was required for image data acquisition, processing, 
and uploading the data for 6 spaces at a time. The time variability was primarily due to the ‘richness’ of 
features in the scene; for example, the 3D reconstruction of an empty parking lot reduced the 
processing time, while generally, occupied spaces with vehicles, increased the processing time.  
Communication internet time-out gaps to the Data Distribution Server (DDS) from the cellular internet 
service operating at each site also contributed to the variability of the total processing time.  The 
identification of such time-out gaps are explained below. 

Monitoring and diagnostic tools developed by the team poled the system every 10 minutes to flag and 
sent notification of internet connection time-out failures lasting at least 10 seconds at a given site. Other 
monitoring tools flagged power outages (from messages sent by the UPS), and communication outages 
of the Data Distribution Server which aggregates and disseminates the parking information.  Table 6.20 
summarizes electrical and communication connectivity failures between 04/17/2014 and 09/26/2015.  
Generally, all sites had connectivity time-out problems less than 0.2 percent of the time regardless of 
the site location and its detection data collection characteristics ( p < 0.01).  A ‘worse-case’ scenario of 
such connectivity outages indicated an expected daily outage time for a given site of 0.0178 x 24 x 60 = 
2.56 minutes per day.   

Table 6.20.  Site Communication Performance 

 Internet comm. failure rate site comparison, 
N=75,942 

 
Internet comm. failure 

rate % 
Elm Creek Big Spunk Lake 

Elm Creek 0.1712   
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Big Spunk Lake 0.1830 p=0.4044  

Enfield 0.1448 p=0.0550 p=0.0330 

DDS 0.0290   

6.4 TRUCK PARKING SPACE DETECTION AND SYSTEM PERFORMANCE CONCLUSIONS 

To conclude, it is evident that persistent parking detection over a variety of time periods and 
environmental conditions was achieved during continuous operation of TPAS. Per-space parking 
detection performance was investigated in some detail through analysis of 538,605 observed parking 
events that occurred in 98,850 samples (images), across different periods and scales of time, camera 
views, and facilities.  Per space detection accuracy was no worse than 95 percent for the data collected.  
With the remaining detection error data (1 to 5 percent) between 25 to 50 percent was associated with 
private vehicles, maneuvering into and out of parking spaces, and occasional double parking.  Such 
errors were generally transient in nature and the detections tended to be corrected in a subsequent 
sample or a short period of time after the event. Furthermore, there was some degree of subjectivity in 
the manual ground-truthing annotation process.  For example, and in particular, judging vehicle 
encroachment in some instances did not actually inhibit parking in the adjacent parking stall; however, 
parking status was conformant with a binary state since ultimately, the information passed as 
notifications to drivers and operators follow such a representation.  Nighttime detection performance 
was somewhat less than daytime performance.  Actually, this was not completely surprising as the 
parking facilities operated generally under low-light conditions of design targets at or less than 0.5 lux 
[35]. 

The system detection performance for imputing a total occupancy count in section 6.3.3  indicated a 
‘count’ error of no more than ±2 about 99 percent of the time.  Perhaps some improvements could be 
achieved by adding non-intrusive, low-energy lighting such as eye-safe infrared lighting which should 
enhance nighttime illumination without distracting drivers and creating safety hazards.  Other 
improvements can be tested to enhance contrast ranges of the images that do not tax computational 
resources should be investigated to also improve detection performance. 

Total occupancy count data were typically within ±1 count 95 percent of the time, and within ±2 counts 
99 percent time. It should be noted that many space detection errors which can affect the total count 
errors were very transient in nature – such as sampling a vehicle pulling into or out of a parking space—
and was recovered with subsequent detections.  A similar occurrence occurred for varied degrees of 
encroachment for a vehicle which was labeled to be double-parked.  As previously mentioned, the 
parking state was strictly assigned a binary state. In this regard, it should be noted that there was some 
degree of subjectivity in ground-truth process under such conditions and thus some variance in the 
detection error can be attributed to the ground-truth labeling process itself.   
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CHAPTER 7:  OPERATIONAL FIELD TEST AND EVALUATION 

Once the three sites were installed, a concept of operations field test evaluated system performance 
and usability by drivers along the corridor.  A description of the field test implementation, system 
reliability performance data, and a system user evaluation of the parking notification modalities are 
presented below.  The aforementioned user evaluation was carried out by ATRI team members. 

7.1 FIELD OPERATIONAL TEST DESCRIPTION 

The SmartPark in-cab truck parking notification system consists of a custom application that 
automatically alerts drivers of upcoming parking availability automated parking notification alerts when 
the vehicle passes through pre-assigned geo-fences upstream of the parking facilities being monitored.  
The application runs on an embedded windows in-cab display. No interaction by the driver was 
necessary to receive the notifications.  The notifications provide a brief description of the facilities—
including its designed parking capacity, its mile post and relative location downstream of the vehicle for 
up to two facilities, and the most up-to-date parking status.  The parking status displays both the 
detected number of spaces available, as well as a categorical representation using colors to denote 
parking availability as either “low”/Red, “medium”/Orange, or “high”/Green. 

The upstream location criteria to place roadside CMS’s was initially guided by the survey results of the 
usability study conducted by ATRI, which had concluded that drivers preferred to receive parking status 
information within 5 and particularly 20 or more miles upstream from the parking facilities.  As it turned 
out, deploying the signs at these distances upstream from the truck parking facilities interfered with 
other roadside traffic and information signs located nearby, or would have been place along unfavorable 
road geometry that could have limited readability of the sign by truck drivers (horizontal curve 
alignments). The parking information to be displayed was constrained by information complexity 
guidelines to between 2 and 4 bits per line (depending on the number of lines, where each word is at 
least 1 ‘bit’).  The resulting MMUTCD compliant hybrid CMS designs, with truck vehicle approach design 
speeds of approximately 70 miles per hour (103 KPH) are presented appendix B.  

Several unforeseen deployment issues associated with the lack of nearby electrification and 
communications, as well as conspicuity issues with other rest area information signs located just after 
the feasible CMS locations, resolved the team to investigate the usage portable large message boards.  
During the process MNDOT indicated that the existing rest area signs would need to be modified (or re-
built), and then reinstalled in a location before the aforementioned CMS signs.  There was a general 
concern that the first information any driver should see upon nearing a rest area location should not 
include the truck parking information.  

Two portable changeable message trailers were integrated with the truck parking architecture and 
deployed. Right of Way Permits were submitted through the permitting offices of MnDOT for two 
feasible portable CMS locations — each between 2 to 3 miles upstream of the Enfield and Elm Creek 
truck parking rest areas, respectively.  The signs were operational during a period between June 20th 
2014, through October 17, 2014. 
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Figure 7.1. Configuration for TPAS concepts of operations field test. 

The messages went ‘live’ June 20th 2014. The first eastbound portable roadside CMS was located 2.1 
miles and 30 miles from Enfield and Elm Creek rest area exits respectively.  The second CMS was placed 
3.5 miles from the Elm Creek rest area exit.  The first CMS indicated the number of available parking 
spaces at 1) Enfield, and 2) Elm Creek, with two separate alternating pages every 2 seconds. The second 
CMS displayed available parking space notifications for Elm Creek only.  The CMS notifications were 
verified frequently through the IRIS client application and the TPAS DDS web interface (Figure 7.2).  
Several driving trips by the research team members were also performed during the testing period to 
validate their operation.  
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a. Elm Creek first EB CMS notification 

 

b. Enfield first EB CMS notification 

Figure 7.2. CMS verification of parking status shown through IRIS and TPAS DDS interfaces. 

Initially, just before the start of the field operational testing, all three public rest areas were online. 
However, during first few weeks of the field testing, the Enfield site experienced hardware problems 
that required repairs of faulty communication and electrical wiring, as well as replacing a defective 
camera.  The site was brought back online in mid-July but by this time it was too late to integrate it into 
the SmartPark in-cab truck parking notification system tests.  Both Big Spunk Lake and Elm Creek were 
included over the entirety of the in-cab notification system evaluation.  

7.2 SYSTEM USABILITY EVALUATION 

The system usability evaluation is divided into two parts.  The first part evaluated efficacy and potential 
scalability of SmartPark, the in-cab, geo-reference truck parking availability notification application.  The 
second part determined if there were any before-and-after changes in driver attitudes toward utility of 
the real-time parking information, through on-site and follow up surveys.  Note that on-site surveys also 
included drivers who only could obtain information from the Roadside Changeable Message Signs 
(CMS), although no distinction in the results was made between the participants who utilized the in-cab 
truck parking notification application.   

7.3 IN-CAB REAL-TIME TRUCK PARKING NOTIFICATION METHODOLOGY  

Two trucking companies participated in testing the SmartPark in-cab parking notification system.  Each 
company outfitted five of their vehicles with the SmartPark system. During the test there were two 
active rest areas along the interstate 94 (I-94) corridor in Minnesota, Big Spunk Lake eastbound (EB) and 
Elm Creek EB (the facility near Maple Grove, MN).  In the following analysis, an event is defined when a 
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vehicle crosses through a specific geo-fence location.  Once an event is established, a vehicle can record 
up to five such events for a given rest stop, one each for twenty, fifteen, ten, and five mile geo-fences 
and a fifth event for actually stopping to park.  A vehicle may record less than four events if it departs 
the geo-fenced highway after initially crossing into a geo-fenced area. The collection of events for a 
given vehicle and a given rest stop at one period of time is considered a “pass”.  Interestingly, one 
conclusion that was borne out from the data is that there were no instances of a driver stopping and 
parking at either of the rest stops registered with the application during the test. 

In the field test study there were 594 distinct events spread across fifteen drivers.  These events made 
up a total of 144 passes.  Across the events, the average percentage of occupied spaces was 54.93 
percent with the median value equal to 56.26 percent. 

7.4 IN-CAB REAL-TIME TRUCK PARKING NOTIFICATION RESULTS  

Several factors might influence a driver’s decision to stop at the rest area.  One of these is the time of 
day during which the events occurred.  However, while many events occurred during normal daylight 
hours, a significant number occurred between 10:00 PM and 5:00 AM in the morning, times when a 
driver might be expected to take a rest (Figure 7.3).  Another contributing factor could be the remaining 
driving hours the driver has before going into violation.  While the average number of hours available 
was 4.39 hours, there were instances in which the driver had less than an hour remaining, the smallest 
of which was 36 minutes.  The number of miles a driver had covered from the start of his day at the time 
of an event might also be a factor in a driver’s decision to stop.  The average number of miles that had 
been driven at an event was 347.96 miles.  The least number of miles driven was less than ten miles 
while the largest was just under 950 miles. 

 

Figure 7.3. SmartPark events aggregated by hour of day. 
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To conclude, and in general, this aspect of the system usability study demonstrates that it is possible to 
geo-fence numerous parking facilities where available parking spaces can be determined using the TPAS 
parking space occupancy detection approach.  Vehicles equipped with the SmartPark system running on 
telematics equipment can successfully retrieve the rest stop geo-fences each day and them to 
determine parking availability in a timely manner.  The technology for informing the driver is functional 
and would be scalable to a much larger number of locations. 

The fifteen drivers in the study recorded nearly 600 events.  On average each driver experienced nearly 
forty alerting events for each of the two rest stops.  One driver had over 120 events across the two stops 
and another recorded over 150 events.  With the average driving hours remaining was above four, there 
were still events in which the driver had less than an hour of driving time remaining.  The number of 
miles that had been driven by a driver at the time of an event was close to 350 miles.  But some drivers 
had covered 700, 800 or 900 plus miles.  As previously noted, many events occurred between 10:00 PM 
and 5:00 AM, a time when drivers might be expected to take their break. 

7.5 REAL-TIME TRUCK PARKING INFORMATION SYSTEM EVALUATION METHODOLOGY 

The ATRI team developed a survey which evaluated the perceptions and needs of truck drivers who 
utilized the real-time truck parking information system.  The team received the contact information for 
drivers from the carriers participating in the testing of the aforementioned onboard real-time truck 
parking notification system.  The ATRI team initially called each of these drivers to schedule a phone 
interview to complete the survey. In addition, ATRI researchers surveyed truck drivers at the Elm Creek 
rest stop who may encountered the Roadside CMS during the concept of operations field test, despite 
not having the onboard computer system. 

7.6 REAL-TIME TRUCK PARKING INFORMATION SYSTEM EVALUATION RESULTS 

7.6.1 Participant Demographics 

Among the participants, 44.4 percent operate in the for-hire segment.  Fifty percent of the for-hire 
drivers operate in the truckload sector, 25.0 percent operate in the less-than-truckload sector, and 25.0 
percent operate in the express/parcel sector.  Approximately 90 percent of participants identified as 
employee drivers, while 11.1 percent identified as an owner-operator ()-)) with own authority.  The 
majority of drivers (66.6 percent), identified as long haul, hauling more than 1,000 miles per trip.  Of the 
participants, 55.6 percent operate in fleets with 51 to 500 power units (PUs), followed by 22.2 percent 
operating in fleets with 21 to 50 PUs.  

7.6.2 Truck Parking Information System Preferences 

As done in the previous pre-implementation usability survey study in chapter CHAPTER 4: , the first set 
of questions addressed driver preferences for receiving real-time truck parking information.  The first 
question of the survey asked drivers to rank order their preferred methods for receiving truck parking 
information, with 1 being the “most preferred” method and 4 being the “least preferred” method.  As 
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displayed in Figure 7.4, Sixty percent of drivers ranked onboard computers as the most preferred 
method for receiving truck parking availability information, followed by roadside CMS, a smart phone 
application, and a website. 

 

Figure 7.4. Preferred method for receiving truck parking availability information. 

The next question asked the drivers, “How far ahead would you like to receive truck parking availability 
information?”  As displayed in Figure 7.5, 44.4 percent would like to receive advance notification at 
twenty miles ahead of the rest stop.  Of the 22.2 percent that selected “other”, one driver indicated 
they would like to receive the advance notification fifty to 60 miles away, while another driver would 
like advance notifications 100 miles away. 
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Figure 7.5. Preferred distance for advanced parking availability notification. 

Next drivers were asked, “What factors are most important in selecting a truck parking location?”  This 
was a multiple response question where drivers were instructed to select all applicable responses.  As 
displayed in Table 7.1, 77.8 percent of drivers indicated “nearing their HOS daily driving limit” was an 
important factor in selecting a truck parking location, followed by 66.7 percent of respondents selecting 
“nearing HOS 30-minute rest break requirement”.  Note that regarding the response to “Nearing HOS 
1am-5am requirement”, at the time this survey was conducted, the Fiscal Year 2015 Omnibus 
Appropriations bill (which included language to suspend the “1:00 AM to 5:00 AM 2013 HOS provisions) 
had not been signed into law. 

Table 7.1.  Factors Influencing Selection of Truck Parking 

Factor Percent of Respondents 

Changeable Message Sign 77.8% 

Smartphone Application 66.7% 

Internet/Website 55.6% 

Onboard device 22.2% 

Nearing HOS “1am-5am” requirement 11.1% 

Staging for a pick up or drop-off 11.1% 

Fueling 11.1% 

The next question asked drivers, “If you were to receive advance notification of truck parking 
availability, which message would you prefer?” As displayed in Table 7.2, 37.5 percent of drivers would 
prefer a message that displayed the exact number of spaces available, while 50.0 percent indicated they 
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would prefer either a categorical message, such as “low availability” or the exact number of spaces 
available. 

Table 7.2.  Preferred Message Display for Parking Availability 

Parking Availability Message Percent of Respondents 

Exact number of spaces available 37.5% 

Space availability: low, medium or high 12.5% 

I would prefer either message 50.0% 

7.6.3 Truck Parking Information System Impacts 

The next set of questions addressed the impacts that the real-time truck parking information system has 
had on their operations.  Drivers who participated in the concept of operations were asked, “What 
impact has the real-time truck parking information system had on your productivity?” Among the 
respondents, 66.6 percent indicated it has had a positive to very positive impact on their productivity 
(Figure 7.6). 

To gauge the value of the experience from the study participant drivers, drivers who did not participate 
in the concept of operations were asked “What potential impact would a real-time truck parking 
information system have on your productivity?” Among these drivers, 66.7 percent indicated a positive 
to very positive impact on productivity. 
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Figure 7.6. Impact of truck parking information system on productivity. 

The next question addressed the impact that the real-time truck parking information system has had on 
a driver’s ability to find available parking.  As displayed in Figure 7.7, 66.7 percent of drivers that 
participated in the concept of operations indicated that the truck parking information system has had a 
significant impact on their ability to find available parking. 

Drivers who did not participate in the concept of operations were asked “What potential impact would a 
real-time truck parking information system have on your ability to find available parking?”  Among these 
drivers, 50 percent indicated a moderate impact. 
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Figure 7.7. Impact of truck parking information system on the ability to find available parking. 

Next drivers who participated in the concept of operations were asked, “What impact has the real-time 
truck parking information system had on your ability to comply with Hours-of-Service (HOS) 
regulations.”  Approximately 67 percent of drivers indicated that the truck parking information system 
has had a significant impact on their ability to comply with HOS regulations (Figure 7.7). 

Drivers who did not participate in the concept of operations were asked “What potential impact would a 
real-time truck parking information system have on your ability to comply with HOS regulations?”  
Among these drivers, 33.3 percent indicated a significant impact. 
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Figure 7.8. Impact of truck parking information system on ability to comply with HOS regulations. 

7.6.4 Public Rest Stops and Private Truck Stops 

The next set of questions queried drivers on their perceptions and use of public rest stops and private 
truck stops for parking. Drivers were asked, “Where is it more difficult to find available parking?”  As 
displayed in Figure 7.9, 55.6 percent of drivers noted that finding available parking was equally difficult 
at public and private rest stops. 

 

Figure 7.9. Where is it More Difficult to Find Available Parking? 
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Drivers were then asked, “For every 10 stops you make, how many are public rest stops and how many 
are private truck stops?”  On average, drivers noted that 4.4 of their stops are at public rest stops and 
5.6 of their stops are at private truck stops. 

7.6.5 Addition Thoughts from Participants 

The final set of questions were open-ended and asked drivers their overall perceptions and opinions of 
the real-time truck parking information system. The first question asked, “What do you like most about 
the real-time truck parking information system?”  Among the responses to this question, drivers 
indicated they liked the advance parking availability notification that the in-cab telematics system 
provided.  The drivers did not note any negatives or aspects they would like to change about the real-
time truck parking information system.  

Finally, drivers were asked, “Do you have any additional thoughts on the real-time truck parking 
information system’s impact on a driver’s ability to find available parking?” Among the responses, one 
driver indicated that the system would be especially useful for new routes where they would be less 
aware of available parking spots.  

Another driver noted that integrating the real-time truck parking system with a GPS provider may be 
useful as the GPS systems provide traffic density information which is an important factor when 
selecting a parking spot.  While the drivers found utility in the real-time truck parking information 
system, they noted they would not pay to reserve a parking space.  Finally, drivers noted that this 
system would further increase truck driver efficiency and productivity if it was implemented across 
multiple states. 

7.7 FIELD TEST CONCLUSIONS 

The concept of operations field test provided valuable insights to where possible system wide 
improvements can be made, such as locating additional roadside message signs, and the value of real-
time onboard parking availability notifications. The field testing period was carried out and monitored 
for about a four month period.  Generally, the technology proved capable of reliably providing around-
the-clock uninterrupted parking information to several information mechanisms; the available cellular 
communication infrastructure was generally very cost effective, albeit the system reliability would very 
likely be significantly better if system wide broadband were available. 

Developing an advance notification, real-time truck parking information system could greatly assist 
drivers in productivity and compliance with federal regulations.  Based on the responses to this concept 
of operation test, drivers would prefer to receive advance notification via onboard computers or 
Changeable Message Sign (CMS).  In addition, the plurality of drivers (44.4 percent) would like to receive 
truck parking information at least 20 miles from the rest stop.  

Among the top factors influencing the drivers’ parking decisions were if they were nearing their HOS 
maximum daily driving limit, nearing their 30-minute HOS rest break requirement or need to use the 
facilities. When surveyed on the CMS parking availability message, the majority of drivers (50.0 percent) 
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indicated they would prefer either the exact number of spaces available or a categorical message (e.g., 
“space availability: low”).  

Of the drivers that participated in the concept of operations test, 50 percent noted a positive impact of 
the real-time truck parking information system on their productivity.  Likewise, 66.7 percent noted the 
system had a significant impact on their ability to find available truck parking and 66.7 percent noted a 
significant impact on their ability to comply with HOS regulations.  

Overall drivers indicated they liked the advance notification feature of the onboard computer and CMS 
and that this information would be especially helpful if they were on unfamiliar routes. Furthermore, 
drivers indicated that if this system was implemented at a national or even multi-state level it would 
have an even greater impact on their productivity and efficiency. 
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CHAPTER 8:  CONCLUSIONS AND RECOMMENDATIONS 

The primary objective of this research project was to develop, test and demonstrate a comprehensive 
ITS approach to deliver truck parking information to drivers and carriers. In particular, a prerequisite of 
the approach was to avoid modifying pavement surfaces or underlying substructures since it would 
especially in seasonal climates such as the Midwest introduce excessive maintenance budgets while 
previous vehicle parking studies have proposed camera-based solutions, due to their ease of 
maintenance and wide availability, there were no non-intrusive systems to directly detect truck parking 
space availability. The team developed and deployed a multi-camera based per-stall truck parking 
detection system to allow around-the-clock, continuous parking detection at three state-sponsored 
truck parking facilities. The facilities have been in continuous operation, providing parking detection 
data for between 1.3 and 2.7 years, thus demonstrating overall operational efficacy across seasonal and 
weather variations in Minnesota.  From the continuous operation of TPAS, it is evident that persistent 
parking detection over a variety of time periods and environmental conditions is achievable. Total 
occupancy count data are typically within ±1 count 95 percent of the time, and ±3 counts 99 to nearly 
100 percent of the time.  A per-space detection accuracy of 95 percent or better was achieved without 
any needed human intervention to re-calibrate the parking detections. 

A concept of operations test evaluation indicated that drivers and operators who used the system 
during the test period could improve their productivity and better comply with federal HOS regulations 
for their long-haul trips. Results of comparative participant/non-participant usability assessments with 
in-cab notifications supported a clear impact in driver and carrier attitudes and perceptions for utilizing 
TPAS notifications to more efficiently plan and complete long-haul trips. Specifically, an increase of over 
30 percent of drivers indicated significant impact for helping them comply with HOS regulations, and 
similarly an increase of 60 percent indicated it “significantly” helped them with their ability to find 
parking during their trips. More than half of all users traveling along the corridor (drivers and operators) 
indicated “positive” or “very positive” impacts of TPAS on their productivity. 

The project evaluated detection performance in some detail through a variety of collected continuous 
operative datasets. There is a tendency for detection error to increase during nighttime vs daytime from 
reduced lighting and visibility. Some of the sources of detection errors were also correlated with driving 
and parking behaviors. Such parking scenarios, for example, vehicle maneuvers into and out of parking 
spaces are very transient in nature and generally the detections recover in subsequent time samples. 
For many cases of lane encroachment (double parking), part of a vehicle may be slightly over the parking 
stall lane and thus labeled by the observer as containing a double parking event when the detection 
indicated otherwise. Indeed, in some cases a truck pulled into the space at a later time. This does not 
necessarily infer that the detection was correct and the ground-truth observation was incorrect but 
rather there exists some degree of subjectivity in making this observation from one of the camera 
images. In short, the parking state was strictly assigned a binary state. We learned that there was some 
level of subjectivity in ground-truth process as a result and thus some variance in the detection error can 
be attributed to the ground-truth labeling process itself.   
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Second, an interesting parking behavior observation during the course of the project was the occurrence 
of one or more vacant parking spaces during periods where overcapacity was observed from the 
ground-truth camera views. That is, several vehicles were parked along overflow and near the ramp 
entrances, but there were designated truck parking spaces unoccupied. Actually, similar observations 
were noted in other parking studies [3]. A counting system under these scenarios would conclude that 
there were no parking spaces available because the facilities was ‘over capacity’ when in fact this was 
not the case, and therefore discouraged drivers from entering the facilities to utilize the vacant parking 
space. In short, regardless of the aforementioned detection errors and parking and environmental 
conditions that may have been associated with them, there was never the possibility for any of the 
aforementioned errors to continuously accumulate over time and require human interventions to 
correct before they rose to an unacceptable level. 

Further improvements to detection performance should be possible with the current approach. Today’s 
trends in professional commercial off-the-shelf surveillance camera sensors continue to improve lighting 
sensitivity and optics in order to improve signal-to-noise ratios during poorly lit scenes. In addition, non-
invasive, low-power consumption outdoor illuminators in the Near Infrared range are widely available 
and might be a reasonable alternative to improve nighttime scene and vehicle illumination for very dark 
areas. In addition, image enhancements to improve contrast during low-visibility conditions should also 
be evaluated to further improve detection performance (with or without any lighting enhancements). 
Since it is clear that drivers and operators prefer truck parking notifications well ahead of downstream 
truck parking facilities, forecasting methods to predict parking availability at different time headways 
should be examined in light of the level of detection accuracy that can be achieved using this approach. 
Lastly, deployment cost reductions could be realized if existing infrastructure were to be used to mount 
cameras.  

Generally, the cellular service communication links between instrumented truck parking facilities and 
the information retrieval and dissemination mechanisms were reliable; a service outage estimate of 2.5 
minutes a day could be expected for any given site. The system gracefully recovers from the outages at 
the expense of delayed parking notifications. The operation of this system would benefit from higher 
speed broadband communication links to further improve the system reliability and remove the need to 
process and store any of the data on-site. 

A more comprehensive study to understand the impact of truck parking availability information on truck 
parking behaviors along the corridor would further elucidate parking utilization and ultimately its costs 
and benefits. More instrumented parking facilities—at least along the same direction— would give 
drivers a more complete regional picture of truck parking. In this regard, such a study should include 
private truck stops since they represent a very significant portion of truck parking capacity along the 
corridor. It is possible to build in other information delivery protocols to fit other architectures suited for 
region-wide, interstate truck parking availability standards and delivery mechanisms. This should be part 
of a more wide-spread implementation of the system in future efforts. Second, with space-level 
detection capabilities, forecasting methodologies can be explored to predict parking availability at 
different headway time scales as drivers travel through the corridor to improve trip planning and 
logistics. 
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Lastly, the ensemble of individual parking behaviors through time and space being collected have not 
been exploited for this study. Facility usage performance metrics—such as where trucks tend to park, 
and the length of time such spaces were occupied, were not considered in this evaluation. Furthermore, 
the raw 3D point cloud data of occupied vehicles contain features that may be exploited to discriminate 
between different vehicle types to quantify facility space utilization trends by different user types [40] 
—for example, private vehicles vs. heavy commercial vehicles. 
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TRUCK PARKING INFORMATION SYSTEM 

DRIVER SURVEY 

 

Supported by the Federal Highway Administration, the American Transportation Research Institute 
(ATRI) is working with several state departments of transportation to develop a real-time truck 
parking information system for truck drivers. ATRI is now documenting truck driver needs and 
suggestions for the system. Your input on the following questions is critical to ensuring that the 
truck parking system delivers value for truck drivers. 

1. Gender 

       Male 

       Female 

 

2. Age 

  Younger than 25 

  25-44 

  45-64 

  65+ 

 

6. What is your average length of haul (check 
one)? 

  Local (less than 100 miles per trip) 

  Regional (100-499 miles per trip) 

  Long-Haul (500+ miles per trip) 

 

3. Employment Status (check one): 

 

  Employee/Company Driver 

  Owner-Operator/Independent Contractor 

 

4. How many power units are operated by your 
employer (check one)? 

  Less than 50 

  50-249 

  250-999 

  1,000+ 

7. What percent of your loads require travel on 
the I-94 corridor between North Dakota and 
Michigan, including Minnesota (check one)? 

  1 – 25% 

  26 – 50% 

  51 – 75% 

  76 – 100% 

  None 

 

8. Typically, how much advance notice do you 

have for your long-distance trips (check 
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 one)? 

 

  Less than 24 hours 

  1-4 days 

  5-9 days 

  10+ days 

 

 

5. What is the primary vehicle configuration that 
you typically drive (check one)? 

 

  5-axle Dry Van 

  5-axle Flatbed 

  5-axle Tanker 

  Straight Truck 

  Longer Combination Vehicles (Doubles, 

Triples, etc.) 

  Other (please specify) 

 

9. How often do you personally experience the following issues (check one response for each row)? 
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10. Please rank order (1-11) the following reasons for seeking truck parking with 1 being the MOST 
important. 

 

      

 

10. Please rank order (1-10) the following truck parking amenities  with 1 being the MOST important. 
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12. How do you access the internet while on the road (check all that apply)? 

 

  Truck Stop/Rest Area Kiosk 

  Hotel/Motel Business Center 

  Onboard Communication 
Device (e.g. PeopleNet, 
Qualcomm) 

 

  Laptop in Vehicle 

  Smartphone 

  Other (please specify) 

 

 

 

13. The I-94 truck parking information system will provide truck parking availability information through 
onboard communication/computer systems, internet and roadside message signs. Please rank 
order (1-5) your preferred method for receiving truck parking information, with 1 being the MOST 
preferred: 

 

 

 

14. Please indicate how far away you would like to be notified of available truck parking (check all that 
apply): 
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15. Would you like the ability to reserve a parking spot? 

  Yes 

 No 

 

If yes, how much, if any, would you be willing to pay to have a guaranteed reservation? 

 

__________________________________________________________ 

 

16. Recognizing that the technology systems can be negatively impacted by power outages, system 
failures and other unintended consequences, please indicate the level of ‘reliability’ that you believe 
the system must provide to be useful to you (check one): 

 

 

 

 

Thanks for your input! 
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Both hybrid CMS designs were designed within SignCAD for MMUTCD compliant for with an approach 
design speed is 75 mph from 900 feet away, along a straight alignment road section, positioned 30 feet 
from clear zone.  

 

Figure B.1. Hybrid single rest area downstream truck parking information CMS design, with overall dimensions 
of 7.5 x 12.5 feet (2.3 x 3.8 m).  
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Figure B.2. Hybrid CMS design for displaying truck parking information for two downstream rest areas, with 
overall dimensions of 7.5 x 16 feet (2.3 x 4.9 m). 
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